United States Patent

US009483568B1

(12) (10) Patent No.: US 9,483,568 B1
Fontoura et al. 45) Date of Patent: Nov. 1, 2016
(54) INDEXING SYSTEM 5,523,946 A 6/1996 Kaplan et al.
5,638,543 A 6/1997 Pedersen et al.
: . : g 5,694,593 A 12/1997 Baclawski
(71) Applicant: ([;j(;OGLE INC., Mountain View, CA 5696962 A 12/1997 Kupiec
Us) 5724571 A 3/1998 Woods
5,754,939 A 5/1998 Herz et al.
(72) Inventors: Marcus Fontoura, Mountain View, CA 5,771,378 A 6/1998 Holt et al.
(US); Daniel N. Meredith, San 5,826,261 A 10/1998 Spencer
Francisco, CA (US); Douglas Lee (Continued)
Taylor Rohde, Briarcliff Manor, NY
(US); Mahesh S. Palekar, Sunnyvale, FOREIGN PATENT DOCUMENTS
CA (US); Asim Shankar, Mountain
View, CA (US); Denis Murray Baylor, WO 2009/033098 AL 3/2009
Cupertino, CA (US); Zigmars
Rasscevskis, Zurich (CH); Andras OTHER PUBLICATIONS
Csomai, San Francisco, CA (US)
US 7,430,556, 09/2008, Patterson (withdrawn)
(73) Assignee: Google Inc., Mountain View, CA (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Cam-Linh Nguyen
U.S.C. 154(b) by 390 days. (74) Attorney, Agent, or Firm — Brake Hughes
Bellermann LLP
(21) Appl. No.: 14/107,851
(22) Filed: Dec. 16, 2013 67 ABSTRACT
Related U.S. Application Data A hybrid-sharded index includes document-sharded posting
(60) Provisional application No. 61/831,487, filed on Jun. lists and term-sharded posting lists. Implementations include
52013 systems and methods using a distributed hybrid-sharded
’ ' index. For example, a method may include receiving, at a
(51) Int.CL root node, a query having a first term and a second term and
GO6F 17/30 (2006.01) determining, that the first term is term-sharded. The method
(52) US.Cl may also include retrieving a term-sharded posting list for
CPC GO6F 17/3087 (2013.01); GOG6F 17/30625 the first term from a first leaf node that stores the term-
""" (2013.01); GO6F 17730864 (2013.01) sharded posting list and determining, at the root node, a
(53) Field of Classifica ti(.)n éearch ' second leaf node that stores a document-sharded posting list
USPC 707/609. 711. 737. 741 for the second term. The method may include sending the
See a hcatlonﬁleforcom lete sea;ch hi’sto ’ second term and a sub-set of documents from the term-
PP P R4 sharded posting list to the second leaf node, the sub-set
(56) References Cited being documents assigned to the second leaf node; and

U.S. PATENT DOCUMENTS

5,321,833 A
5,495,567 A

6/1994 Chang et al.
2/1996 lizawa et al.

generating a search result using a response received from the
second leaf node.

23 Claims, 9 Drawing Sheets

[] m
INDEXING ENGINE 110 WE?;TES
Network
QUERY ENGINE (ROCT) 120 180
Query182-
Dac-
Base Docs. CLIENT
142 Sharded Search Results 184- N n
Terms 144
INDEX SERVING
CLUSTER 160
LEAF 1504 eee LEAF 1a0a
:
DocI0s Mod 0 7 |71, L1(d1, d35), L2[d53, 067, a99], L3[d116] }
—— | [vrmsones v s o
Term-Sharded
ooc Bt o | | Posting Usts 73, L2ldze, a7, La(e 178, d189, d100])
154 L
Delta Files 158

US 9,483,568 B1

Page 2
(56) References Cited 7,149,748 Bl 12/2006 Stephan
7,151,864 B2 12/2006 Henry et al.
U.S. PATENT DOCUMENTS 7,152,064 B2 12/2006 Bourdoncle et al.
7,155,243 B2 12/2006 Baldwin et al.
5,835,087 A 11/1998 Herz et al. 7,158,983 B2 1/2007 Willse et al.
5,852,820 A 12/1998 Burrows 7,171,619 Bl 1/2007 Bianco
5,864,863 A 1/1999 Burrows 7,194,483 Bl 3/2007 Mohan et al.
5,913,207 A 6/1999 Chaudhuri et al. 7,200,802 B2 4/2007 Kawatani
5,915,249 A 6/1999 Spencer 7,206,389 Bl 4/2007 Dumoulin et al.
5.020.854 A 7/1999 Kirsch et al. 7,240,064 B2 7/2007 Risvik et al.
5.056.722 A 0/1999 Jacobson et al. 7,243,092 B2 7/2007 Woehler et al.
5960383 A 9/1999 Fleischer 7,254,580 Bl 8/2007 Gharachorloo et al.
5.063.965 A 10/1999 Vogel 7,263,530 B2 82007 Hu et al.
5,983,216 A 11/1999 Kirsch et al. 7,328401 B2 22008 Obata et al.
6,021,409 A 2/2000 Burrows 7.346,839 B2 3/2008 Acharya et al.
6,070,158 A 5/2000 Kirsch et al. 7,356,527 B2 4/2008 Carmel et al.
6,085,186 A 7/2000 Christianson et al. 7,356,528 Bl 4/2008 Amer-Yahia et al.
6,098,034 A 8/2000 Razin et al. 7,395,501 B2 7/2008 Graham et al.
6,178,419 Bl 1/2001 Legh-Smith et al. 7,426,507 Bl 9/2008 Patterson
6,185,550 Bl 2/2001 Snow et al. 7428,529 B2 9/2008 Zeng et al.
6,185,558 Bl 2/2001 Bowman et al. 7,454,449 B2 11/2008 Plow et al.
6,298,344 Bl 10/2001 Inaba et al. 7483871 B2 1/2009 Herz
6,349,316 B2 2/2002 Fein et al. 7,506,338 B2 3/2009 Alpern et al.
6,363,377 Bl 3/2002 Kravels et al. 7,536,408 B2 52009 Patterson
6,366,911 Bl 4/2002 Christy 7,562,066 B2 7/2009 Kawatani
6,366,933 Bl 4/2002 Ball et al. 7,567,959 B2 7/2009 Patterson
6,401,060 Bl 6/2002 Critchlow et al. 7,580,921 B2 8/2009 Patterson
6,415,283 Bl 7/2002 Conklin 7,580,929 B2 8/2009 Patterson
6,470,307 Bl 10/2002 Turney 7,584,175 B2 9/2009 Patterson
6,484,166 B1 11/2002 Maynard 7,596,571 B2 9/2009 Slfr_y et al.
6,499,030 Bl 12/2002 Igafa 7,627,613 Bl 12/2009 Dulitz et al.
6,542,888 B2 4/2003 Marques 7,668,825 B2 2/2010 Vogel et al.
6,549,895 Bl 4/2003 Lai 7,673,027 B2 3/2010 Janakiraman et al.
6,549,807 Bl 4/2003 Katariya et al. 7,693,813 BL - 4/2010 Cao et al.
6.571.240 Bl 5/2003 Ho et al. 7,702,614 Bl 4/2010 Shah et al.
6.504.658 B2 7/2003 Woods 7,702,618 Bl 4/2010 Patterson
6,596:030 B2 7/2003 Ball et al. 7,743,379 B2 6/2010 Mathews et al.
6,606,639 B2 8/2003 Jacobson et al. 7,917,528 Bl 3/2011 Dave et al.
6,638,314 Bl 10/2003 Meyerzon et al. 7,925,655 Bl 4/2011 Power et al.
6,654,739 Bl 11/2003 Apte et al. RE42,728 E 9/2011 Madrane
6,684,183 Bl 1/2004 Korall et al. 8,086,594 Bl 12/2011 Cao et al.
6,691,106 Bl ~ 2/2004 Sathyanarayan 8,090,723 B2 12012 Cao
6,697,793 B2 2/2004 Mcgreevy 8,166,021 Bl 4/2012 Cao et al.
6,721,728 B2 4/2004 Mcgreevy 8,166,045 Bl 4/2012 Mazumdar et al.
6,741,981 B2 5/2004 Mcgreevy 8,224,861 B2 7/2012 Shinjo et al.
6,741,982 B2 5/2004 Soderstrom et al. 8,402,033 Bl ~ 3/2013 Mazumdar et al.
6,741,984 B2 5/2004 Zaiken ef al. 8,600,975 Bl 1222013 Cao et al.
6,769,016 B2 7/2004 Rothwell et al. 8,682,901 Bl ~ 3/2014 Cao et al.
6.772.150 Bl 8/2004 Whitman et al. 8,818,971 Bl 82014 Fontoura et al.
6778970 B2 8/2004 Au 8,943,067 Bl 1/2015 Cao et al.
6,778,979 B2 8/2004 Grefenstette of al. 9,223,877 Bl 122015 Cao et al.
6,778,980 Bl 8/2004 Madan et al. 2001/0000356 Al 4/2001 Woods
6.820.237 Bl 11/2004 Abu-Hakima et al. 2001/0021938 Al 9/2001 Fein et al.
6.823333 B2 11/2004 Megreevy 2002/0042707 Al 4/2002 Zhao et al.
6,832,224 B2 12/2004 Gilmour 2002/0042793 Al 4/2002 Choi
6.839.682 Bl 1/2005 Blume et al. 2002/0046018 Al 4/2002 Marcu et al.
6.839.700 B2 1/2005 Doyle et al. 2002/0049753 Al 4/2002 Burrows
6,859,800 Bl 2/2005 Roche et al. 2002/0052901 Al 5/2002 Guo et al.
6,862,710 Bl 3/2005 Marchisio 2002/0065857 Al 5/2002 Michalewicz et al.
6 886’010 B2 4/2005 Kostoff 2002/0078090 Al 6/2002 Hwang et al.
6.910.003 Bl 6/2005 Arnold et al. 2002/0091671 Al 7/2002 Prokoph
6.947.030 B2 9/2005 Anick et al. 2002/0138467 Al 9/2002 Jacobson et al.
6,963’867 B2 11/2005 Ford et al. 2002/0143524 Al 10/2002 O’Neil et al.
6 978’274 Bl 12/2005 Gallivan et al. 2002/0147578 Al 10/2002 O’Neil et al.
6,981,040 Bl 12/2005 Konig et al. 2002/0174113 A1 11/2002 Kanie et al.
6,983,345 B2 1/2006 Lapir et al. 2002/0184380 Al 12/2002 Weider et al.
6.997.793 Bl 2/2006 Tto 2002/0188587 Al 12/2002 Mcgreevy
7017.114 B2 3/2006 Guo et al. 2002/0188599 Al 12/2002 Mcgreevy
7.028,026 Bl 4/2006 Yang et al. 2002/0194184 Al 12/2002 Baskins et al.
7,028,045 B2 4/2006 Franz et al. 2003/0031996 Al 2/2003 Robinson
7,051,014 B2 5/2006 Brill et al. 2003/0037041 Al 2/2003 Hertz
7,051,023 B2 5/2006 Kapur et al. 2003/0051214 Al 3/2003 Graham et al.
7,051,024 B2 5/2006 Fein et al. 2003/0069877 Al 4/2003 Grefenstette et al.
7,058,580 Bl 6/2006 Leamon et al. 2003/0078913 Al 4/2003 Mcgreevy
7,085,771 B2 8/2006 Chung et al. 2003/0093790 Al 5/2003 Logan et al.
7,089,236 Bl 8/2006 Stibel 2003/0101183 Al 5/2003 Kabra et al.
7,137,062 B2 11/2006 Kaufman et al. 2003/0130993 Al 7/2003 Mendelevitch et al.
7,137,065 Bl 11/2006 Huang et al. 2003/0135495 Al 7/2003 Vagnozzi
7,139,756 B2 11/2006 Cooper et al. 2003/0144995 Al 7/2003 Franz et al.

US 9,483,568 B1
Page 3

(56)

2003/0191627
2003/0195877
2004/0006736
2004/0034633
2004/0052433
2004/0064438
2004/0068396
2004/0133560
2004/0158580
2004/0186824
2004/0186827
2004/0225667
2004/0260692
2005/0043940
2005/0060295
2005/0060651
2005/0071310
2005/0071328
2005/0102270
2005/0154723
2005/0165778
2005/0203924
2005/0216564
2005/0234879
2005/0256848
2005/0266926
2005/0278620
2006/0018511
2006/0018551
2006/0020571
2006/0020607
2006/0031195
2006/0036593
2006/0053157
2006/0106792
2006/0143174
2006/0143714
2006/0200464
2006/0212441
2006/0218123
2006/0268742
2006/0288047
2006/0294155
2007/0033165
2007/0050393
2007/0112755
2007/0156677
2008/0005064
2008/0146338
2008/0195601
2008/0228802
2008/0306943
2008/0319971
2009/0063400
2009/0070312
2009/0164437
2009/0193406
2009/0228528
2010/0161617
2011/0302146
2012/0005224

2012/0047188
2012/0078859
2012/0130984
2012/0179684
2012/0215785

2013/0297625

References Cited

U.S. PATENT DOCUMENTS

Al*

A9
Al

Al*

Al*

Al

10/2003
10/2003
1/2004
2/2004
3/2004
4/2004
4/2004
7/2004
8/2004
9/2004
9/2004
11/2004
12/2004
2/2005
3/2005
3/2005
3/2005
3/2005
5/2005
7/2005
7/2005
9/2005
9/2005
10/2005
11/2005
12/2005
12/2005
1/2006
1/2006
1/2006
1/2006
2/2006
2/2006
3/2006
5/2006
6/2006
6/2006
9/2006
9/2006
9/2006
11/2006
12/2006
12/2006
2/2007
3/2007
5/2007
7/2007
1/2008
6/2008
8/2008
9/2008
12/2008
12/2008
3/2009
3/2009
6/2009
7/2009
9/2009
6/2010
12/2011
1/2012

2/2012
3/2012
5/2012
7/2012
8/2012

11/2013

Au
Ford et al.
Kawatani
Rickard

Henry et al.
Kostoff
Kawatani
Simske

Carmel et al.
Delic et al.
Anick et al.

Hu et al.

Brill et al.

Elder

Gould et al.
Anderson

Eiron et al.
Lawrence
Risvik et al.
Liang

Obata et al.
Rosenberg
Myers et al.
Zeng et al.
Alpert et al.
Kesselman et al.
Baldwin et al.
Stam

Patterson
Patterson
Patterson
Patterson

Dean et al.

Pitts

Patterson

Dey et al.
Peterson et al.
Gideoni et al.
Tang et al.
Chowdhuri et al.
Chu et al.
Chron et al.
Patterson
Sheinwald et al.
Vogel
Thompson et al.
Szabo

Sarukkai
Bernard et al.
Ntoulas et al.
Marshall
Patterson et al.
Patterson
Borkar et al.
Patterson
Torbjornsen
Williams
Ercegovac et al.
Cao et al.
Bilenko et al.
Ahrens

GOG6F 17/30864

G06Q 10/10
707/769

Chron et al.

Vaitheeswaran et al.

Risvik et al.

Alba GO6F 17/30631
707/738

GO6F 17/30867

707/741

Bierner et al.

2014/0351203 Al* 11/2014 Kunnatur GO6F 17/30312

707/609
2014/0351204 Al* 11/2014 Kunnatur GO6F 17/30486
707/609
2015/0186519 Al* 7/2015 Popov GO6F 17/30622
707/723

OTHER PUBLICATIONS

Ahmed et al., “Word Stemming to Enhance Spam Filtering”,
available online at <http://citeseerx.ist.psu.edu/viewdoc/download-
?2d0i=10.1.1.59.9479&rep=rep 1 &type=pdf>, Jul. 30-31, 2004, pp.
1-2.

Ahonen-Myka et al., “Finding Co-Occurring Text Phrases by Com-
bining Sequence and Frequent Set Discovery”, Proceedings of the
Workshop on Text Mining: Foundations, Techniques and Applica-
tions, IJCAI-99, Jul. 31, 1999, pp. 1-9.

Aizawa, A, “An Information-Theoretic Perspective of TF-IDF Mea-
sures”, Information Processing and Management, vol. 1, Issue 39,
2003, pp. 45-64.

Beitzel et al., “Automatic Web Query Classification Using Labeled
and Unlabeled Training Data”, Proceedings of the 28th Annual
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Aug. 15-19, 2005, pp. 581-582.
Broder et al., “Robust Classification of Rare Queries Using Web
Knowledge”, Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, 2007, pp. 231-238.

Caropreso et al., “Statistical Phrases in Automated Text Categori-
zation”, Internet Publication-Technical Report, available online at
<https://'www.researchgate.net/profile/Fabrizio_Sebastiani/publi-
cation/2407903__Statistical Phrases_in_ Automated_ Text Cat-
egorization/links/5510e1ad0¢£20352196¢c978 pdf>, May 26, 2000,
pp. 1-18.

Chang et al., “Performance and Implications of Semantic Indexing
in a Distributed Environment.”, Proceedings of the 8th International
Conference on Information Knowledge Management, 1999, pp.
391-398.

Chen et al., “Automatic Construction of Networks of Concepts
Characterizing Document Databases”, IEEE Transactions on Sys-
tems, Man, and Cybernetics, vol. 22, No. 5, Sep./Oct. 1992, pp.
885-902.

Chen et al., “Automatic Thesaurus Generation for an Electronic
Community System”, Journal of the American Society for Infor-
mation Science, vol. 46, No. 3., Apr. 1, 1995, pp. 175-193.
Cheung et al., “An Efficient Algorithm for Incremental Update of
Concept Spaces”, Advances in Knowledge Discovery and Data
Mining Lecture Notes in Computer Science, 2002, 16 pages.
Fetterly et al., “Detecting Phrase-Level Duplication on the World
Wide Web”, Proceedings of the 28th annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (SIGIR ’05), Aug. 15-19, 2005, 8 pages.

Garner et al., “Gene Alert—A Sequence Search Results Keyword
Parser”, IEEE Engineering in Medicine and Biology Magazine, vol.
17, Mar.-Apr. 1998, pp. 119-122.

Gedeon et al., “Hierarchical Co-Occurrence Relations.”, IEEE
International Conference on Systems, Man, and Cybernetics, vol. 3,
Oct. 11-14, 1998, pp. 2750-2755.

House, David, “Save Web Time with WebSumm”, MITRE Publi-
cations, Jul. 1997, 3 pages.

Jagadeesh et al., “Sentence Extraction Based Single Document
Summarization”, Workshop on Document Summarization, Mar.
19-20, 2005, 5 pages.

Jing et al., “An Association Thesaurus for Information Retrieval.”,
Proceedings of RIAO-94, 4th International Conference on Intelli-
gent Multimedia Information Retrieval Systems and Management,
Oct. 11-13, 1994, pp. 1-15.

Jones et al., “Interactive Document Summarisation Using Auto-
matically Extracted Keyphrases”, Proceedings of the 35th Annual
Hawaii International Conference on System Sciences, 2002, pp.
1287-1296.

US 9,483,568 B1
Page 4

(56) References Cited
OTHER PUBLICATIONS

Jones et al., “Topic-Based Browsing Within a Digital Library Using
Keyphrases”, Proceedings of the 4th ACM conference on Digital
Libraries, Aug. 11-14, 1999, pp. 114-121.

Kando, Noriko, “Text Structure Analysis as a Tool to Make
Retrieved Documents Usable”, Proceedings of the 4th International
Workshop on Information Retrieval With Asian Languages, Nov.
11, 1999, pp. 1-10.

Leroy et al., “Meeting Medical Terminology Needs—The Ontol-
ogy-Enhanced Medical Concept Mapper”, IEEE Transactions on
Information Technology in Biomedicine, vol. 5, No. 4, Dec. 2001,
pp. 261-270.

Lin et al., “An Automatic Indexing and Neural Network Approach
to Concept Retrieval and Classification of Multilingual (Chinese-
English) Documents”, IEEE Transactions on Systems, Man and
Cybemetics. Part B: Cybemetics, vol. 26, No. 1, Feb. 1, 1996, pp.
75-88.

Mandala et al.,, “Combining Multiple Evidence From Different
Types of Thesaurus for Query Expansion.”, Proceedings of
SIGIR’99 22nd International Conference on Research and Devel-
opment in Information Retrieval, Aug. 1999, pp. 191-197.
Nguyen et al., “Mining ‘Hidden Phrase’ Definitions from the Web.”,
Proceedings of the Fifth Asia-Pacific Web conference, Apr. 2003,
pp. 1-11.

Ntoulas et al., “Detecting Spam Web Pages Through Content
Analysis”, Proceedings of the 15th International Conference on
World Wide Web, May 23-26, 2006, pp. 83-92.

Pretschner et al., “Ontology Based Personalized Search”, Proceed-
ings of the 11th IEEE International Conference on Tools with
Attificial Intelligence, Nov. 9, 1999-Nov. 11, 1999, IEEE Compu-
tational intelligence Society, Chicago IL., USA., Nov. 1999, pp.
391-398.

Schutze et al., “A Cooccurrence-based Thesaurus and Two Appli-
cations to Information Retrieval”, Information Processing & Man-
agement, vol. 33, No. 3, 1997, pp. 307-318.

Shen et al., “Building Bridges for Web Query Classification”,
Proceedings of the 29th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 2006,
pp. 131-138.

Shen et al., “Q2c@ust:Our Winning Solution to Query Classifica-
tion in KDDCUP 20057, SIGKDD Explorations, vol. 7, Issue 2,
Dec. 2005, pp. 100-110.

Srinivasan, P, “Optimal Document-Indexing Vocabulary for
Medline.”, Information Processing & Management, vol. 32(5), Sep.
1996, pp. 503-514.

Stanfill et al., “Information Retrieval on The Connection Machine:
1 to 8192 Gigabytes”, Information Processing and Management,
vol. 27, No. 4, 1991, pp. 285-310.

Stanfill, C., “Partitioned Posting Files: A Parallel Inverted File
Structure for Information Retrieval”, Paper presented at the Inter-
national Conference on Research and Development in Information
Retrieval, Sep. 1990, pp. 413-428.

Tomasic et al., “Caching and Database Scaling in Distributed
Shared-Nothing Information Retrieval Systems”, Stanford Univer-
sity Computer Science Technical Report STAN-CS-92/1456, Dec.
22, 1992, 21 pages.

Tomasic et al., “Caching and Database Scaling in Distributed
Shared-Nothing Information Retrieval Systems”, ACM, May 1993,
pp. 129-138.

Tomasic et al., “Performance of Inverted Indices in Shared-Nothing
Distributed Text Document Information Retrieval Systems”, IEEE,
Jan. 1993, pp. 8-17.

Tomasic et al., “Query Processing and Inverted Indices in Shared-
Nothing Text Document Information Retrieval Systems”, VLDB
Journal, vol. 2, 1993, pp. 243-275.

Tomasic. et al., “Performance of Inverted Indices in Distributed Text
Document Retrieval Systems”, Stanford University Computer Sci-
ence Technical Report STAN-CS-92/1434, Jun. 23, 1992, 25 pages.
Yun et al, “Semantic-Based Information Retrieval for Content
Management and Security”, Computational Intelligence, vol. 19,
No. 2, 2003, pp. 87-110.

Sornil et al., “Hybrid Partitioned Inverted Indices for Large-Scale
Digital Libraries”, Proceedings of the 4th International Conference
of Asian Digital Libraries, Bangalore, India, 2001, 11 pages.

* cited by examiner

US 9,483,568 B1

Sheet 1 of 9

Nov. 1, 2016

U.S. Patent

l 'Old

{[661p ‘68LP '8LLPIFT ‘[LP 9GPIZT €1}
{ [6¥cp ‘ovGPlLT ‘[sZLP ‘p2iLple ‘bRl 21}

{[91LLpleT ‘[66P ‘29p ‘€GPIZT ‘[GEP ‘LPILT L1}

(=

Ll

IN3ITO

TT s1nssy yoless

ZarAiany J

06}
S311S9am

_’.ﬂ S8|qBL UONE|SUB]]

8G1 so|ld ejsg

¥CT
sisi7 Bunsod £-U PO sQ| 907
papJleys-wJia | T
sjuswinaog

ZGT sis17 Bunsod pepleys-ooq

L PO 8@l 20

oSt 4v3at

40861 4v31

0 POy sd120Qq

V0sl 4val

\ 097 ¥31SN1D

ONIALTIS X3ANI

\

Y o1

F¥L swia]

pepieys
-00(Q

08T
HIOMISN

021 (LOOY) ANIONT AHIND

(e
[
~—

» 0L} INIONI ONIX3ANI

— 0Er
a2} sollg
s00Q eseg o1epdn xepu|

U.S. Patent Nov. 1, 2016 Sheet 2 of 9 US 9,483,568 B1

Leaf 3 Root Leaf 2

1
Receive Query for
terms 7172
205
T

Determine term-
sharded terms

210
|
Send request for less /
popular term-sharded T2 o | Get posting list for 72
posting lists < v 220
215
T
| 275 !

Send posting list
Receive posting lists <.{ L1 [d4], L3[d124, d125], and any

from the leaves appropriate delta

I
|
|
|
|
|
|
|
|
|
|
I I 270
|
|
|
|
|
|
|
|
|
|
|
1

230 L7[d546, d549] } to the root
225
280 ! |
- Aggregate and send
Receive request / split posting lists to the
ob f:)r 17)_1 9 (4(T1}, {L3[d124, d125]}— appropriate leaves

240 along with T1

235

[

Intersect posting |

list for 77 with |

received posting |
list to generate

result documents, :

|

|

|

using delta where
needed
240

Result
documents?
245

No

Aggregate results from

| Yes leaves and provide
1 results to the query
Score result engine

documents and 255

send to root
250

L (d124}—p

U.S. Patent Nov. 1, 2016 Sheet 3 of 9 US 9,483,568 B1

(Start)

A
Receive an update file
305

v
Assign local document ids and generate a
translation table
310

v

Generate replacement index and a delta file
including a translation table, term insert lists,
and a delete list and determine tier for each term
315

v

Divide replacement index into leaf portions,
including a document-sharded portion.
320

v

Send leaf portions to respective leaves
325

Co
o
()

Store document-sharded
posting lists in an empty
Yes—» slot and tell root to use

Term
document-sharded?

330 empty slot
N 335
4
Concatenate portions from other leaves
to form full posting list
340
y
v
Swap full posting list with old posting list f
345 » End

FIG. 3

US 9,483,568 B1

Sheet 4 of 9

Nov. 1, 2016

U.S. Patent

<6b 79>

<96 Y />
<gb ‘19>
<Gb] ‘G>
<26'a ‘»>
<zb ‘D ‘e>
<¢b ‘g ‘2>
<16y ‘L>

Gl Xapu| MaN

¥ 'Old

b= L SO

04 moo0¢|m

e olRa b

42 €

I+ g

gzp olgeL 0z¥ lgeL
uone|suel] osisAU| uone|suel] plemioH

<6b 72>

<96y ‘9>
<Gb ‘| ‘G>

/
/(<8P > ‘<2B ‘a> ‘<£b ‘g>) Hasu|
(¥6 ‘eB) a1slaq

<pB ‘O ‘p>
<¢b ‘g ‘c>

N 0L s1epdn

100G 4v3T

<zb ‘0 ‘z>
<|B'v‘L>

SO Xspu| PIO

US 9,483,568 B1

Sheet 5 of 9

Nov. 1, 2016

U.S. Patent

[<uonewuoyul eyap>
<lvg ‘2€€ ‘SvE ¥6TL>
</0€ ‘S0¢E ‘8v€ 981>

<B6¥¢ ‘8l€ ‘1EC 16ZL> U1

G 'Old

[<uoneuwuoul e)op>

</ 1€ ‘6G¢E 291>
<G¥¢ '10€ ‘8¢ v1>
<€Z€ '9¢1 'v0€ 841> I2

[<uoneuwoyul eyap>
<l0¢ ‘8.¥ ‘vECl>
<€Z¢ 'OrE ‘GOE 111> 111

1061 4v31

[<uoieWIOUI B)BP>
<lZ ‘9Z ‘S¥ vel>
<GZ '8¢ 198¢1>

<6l ‘9l :GZ1> Ju

H <uolleuwlojul eljjsp=>

<9 ‘9% ‘$SZ1>

<Ll ‘9% ‘g:291>
<€Z ‘6l ‘2L :GL1> 121

[<uonewLo B19p>

<G¥ ‘€l ‘6 :G¥1l>

<Ll ‘Pg ¥El>
<€Z‘9'cil1>111

V0S1 4v3

US 9,483,568 B1

Sheet 6 of 9

Nov. 1, 2016

U.S. Patent

9 'Old

0ce

s|ge L uone|suel] /7

‘a|ge] uone|suel] z7
‘a|ge] uone|sued] L7

121

[<Sv ‘Sl ‘6:L1>]1GYL

[<10€ ‘8. :M>

<Ll ‘PEL>] vEL
[<€2E ‘ove ‘Gog 11>

“<gZ 9> 1Ll

V0Sl dv3T

U.S. Patent

Nov. 1, 2016

Sheet 7 of 9

(Start)

Select a posting list
710

<—Ye37k

v

Concatenate delta to the
end of the posting list
715

v

Load and verify the
posting list
720

A 4

Unload old posting list
725

Another
posting list?

»
»

Y
Disk
processing?
705

US 9,483,568 B1

00

Divide posting lists
and corresponding
deltas into slices
735

bi

Load slice and delta
into RAM/Flash
740

v

Verify loaded slice
using query traffic
745

v

Unload old slice
750

No»]

Another Yes
slice?
755

No

Finished?
760

Yes
A 4

Verify new version

65

FIG.7

v

Tell the root to use the empty slots and
stop applying the deltas

70

End

US 9,483,568 B1

Sheet 8 of 9

Nov. 1, 2016

U.S. Patent

0€8

8 Ol

7l8

0v8

Zl8

808

018

08

908

918

l/ 008

U.S. Patent

Nov. 1, 2016

Sheet 9 of 9

900
a

978

980c

US 9,483,568 B1

FIG. 9

US 9,483,568 Bl

1
INDEXING SYSTEM

RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 to
Provisional Patent Application Ser. No. 61/831,487, entitled
“INDEXING SYSTEM” filed Jun. 5, 2013. The subject
matter of this earlier filed application is hereby incorporated
by reference.

BACKGROUND

Search engines assist users in locating information found
in a collection of data, including, for example, web pages,
PDFs, word processing documents, images, other types of
files, etc. Such files may generally be referred to as docu-
ments. In order to quickly and effectively search the various
documents for relevant information, search engines may
index the contents of the documents and use the index to
respond to search queries. The index may be included as part
of a repository, which is a processed, encoded, and indexed
version of a collection of data. A repository for a large
collection of data, such as the Internet, may include billions
of documents. Thus, some repositories are distributed
amongst many machines, dividing the repository into
smaller, more manageable pieces. The index for the reposi-
tory may be an inverted index that is comprised of posting
lists, with each posting list representing a term and docu-
ments that contain the term. To represent a document, the
posting list typically uses a document identifier or other
pointer to the document. The posting list can also include
other information, such as a position in which the term
appears, or other information about the terms or documents.
The index may also include metadata for the posting lists
and documents.

In a distributed environment, the index may be divided
amongst many machines. The division may be by document
or by term. An index divided by document, or document-
sharded index, minimizes network traffic between the com-
puting devices but increases input/output (I/O) operations.
An index divided by term, or term-sharded index, optimizes
1/O operations, but increases network traffic. The purpose
and size of the index may generally determine whether an
index is term-sharded or document-sharded.

SUMMARY

Implementations combine a document-sharded index with
a term-sharded index, balancing 1/O operations with net-
work traffic considerations. The system may be a distributed
system, with the index stored amongst a number of com-
puting devices, also referred to as leaves. The system may
assign indexed documents to a leaf. The indexed documents
may be assigned to one of two or more sets, e.g., base
documents or extended documents. At indexing time the
system may generate posting lists for the terms included in
the documents. Whether a term appears in a term-sharded
posting list or a document-sharded posting list may be based
on the document type in which the term appears. In general,
terms appearing in base documents are document sharded
and stored on the same machine that the document is
assigned to. In general, terms appearing in extended docu-
ments are term sharded and may be stored on a machine that
differs from the machine to which the document is assigned.
In other words, the indexing system may include a subset of
documents for which posting lists are on the same leaf as the
document and another subset of documents for which post-

10

20

25

35

40

45

2

ing lists may be stored on other leaves. A root server may
keep track of which terms are document sharded as well as
which documents are base documents. The system may also
include an update process that minimizes index unavailabil-
ity and facilitates recovery by allowing each leaf to deter-
mine which version of a document to serve at query time.

One aspect of the disclosure can be embodied in a system
that includes distributed computing devices represented by
leaf nodes and memory storing an index of documents, the
index being distributed across multiple computing devices,
and the documents being assigned to respective computing
devices. The documents include a first document in a first set
of documents assigned to a first leaf node and a second
document in a second set of documents assigned to the first
leaf node. The index can include posting lists for at least
some terms, including all terms, in the first document that
are document sharded and stored in fast memory at the first
leaf node. The index can also include posting lists for at least
some of the terms, including all the terms, in the second
document that are term sharded, the term-sharded posting
lists being stored at computing devices other than the first
leaf node. The system also includes at least one root com-
puting device that includes at least one processor and
memory storing instructions that, when executed by the at
least one processor, cause the root computing device map
documents to computing devices and map term-sharded
terms to computing devices. In some implementations, the
memory may store one or more of the mappings. The root
computing device also includes memory storing instructions
that, when executed by the at least one processor cause the
system to use the posting lists to respond to queries.

The system can include one or more of the following
features, for example, the posting lists for at least some
terms in the second document can be document-sharded
rather than term-sharded, and stored on the first leaf node. As
another example, accessing posting lists can include, in
response to a query having at least a first query term and a
second query term, the second query term corresponding to
one of the term-sharded terms, retrieving a posting list for
the second query term from one of the computing devices,
wherein the retrieved posting list indexes occurrences of the
second query term in documents stored on multiple different
computing devices of the distributed computing devices and
retrieving posting lists for the first query term from some of
the multiple different computing devices, wherein the
retrieved posting lists index occurrences of the first query
term in documents that are co-located on the computing
device that stores the respective posting list. In such imple-
mentations, references to documents in the posting list for
the second query term can be organized by computing
device to which the documents are assigned. In some
implementations, the posting lists for document-sharded
term are stored in fast access storage. In some implemen-
tations, the terms that are document-sharded from the sec-
ond document are common terms. In some implementations,
each of the term-sharded terms is assigned to a respective
leaf node of the leaf nodes.

As another example, the root computing device may also
include memory storing instructions that cause the system to
generate a search result responsive to accessing the posting
lists. Generating the search result can include receiving a
query at the root computing device, the query having at least
a first query term and a second query term, determining that
the second query term is term sharded, obtaining a posting
list for the second query term from a computing device to
which the second query term is assigned, and sending at
least a portion of information in the obtained posting list to

US 9,483,568 Bl

3

at least another computing device for intersection with a
posting list for the first query term. In some such imple-
mentations, generating a search result can include receiving
scores for documents from the another computing device,
the documents being relevant to the first query term and
identified by the obtained posting list. Also in some such
implementations, the another computing device may receive
information about (i) the first query term, (ii) the second
query term, and (iii) a portion of the posting list for the
second query term that was obtained from the computing
device to which the second query term is assigned and may
use the information to identify documents in the first set
relevant to the query and documents in the second set
relevant to the query.

Another aspect of the disclosure can be embodied in a
data storage system that includes a plurality of leaf com-
puting devices in a distributed system, and a root computing
device in communication with the plurality of leaf comput-
ing devices. At least one of the leaf computing devices may
include memory configured in arrays, at least some of the
memory being fast-access memory, and at least some of the
memory being disk memory. The at least one leaf computing
device may also include processors for accessing the
memory and processing posting lists stored in the memory,
each array being accessible at least to one or more proces-
sors of the at least one leaf computing device. The memory
may store documents assigned to the at least one leaf
computing device, document-sharded posting lists for terms
appearing in or associated with a first set of the documents,
the document-sharded posting lists being stored in the
fast-access memory. The memory may also store term-
sharded posting lists for terms appearing in remaining
documents (e.g., not in the first set), the terms being assigned
to respective leaf computing devices of the plurality of leaf
computing devices regardless of the leaf computing device
assignment of documents in which the terms appear, the
term-sharded posting lists being stored primarily in the disk
memory.

The data storage system can include one or more of the
following features. For example, a document portion of the
term-sharded posting lists may be pre-split into groups, each
group being associated with a respective leaf computing
device of the plurality of leaf computing devices, and the
root computing device may include at least one processor;
and memory storing instructions that, when executed by the
at least one processor, cause the root computing device to
perform operations. The operations include receiving a
query, the query including a first term and a second term, the
second term being term-sharded, and retrieving the posting
list for the second term from a second leaf computing device
of the plurality of leaf computing devices, the second leaf
computing device being associated with the second term.
The operations also include determining, based on the
groups appearing in the posting list for the second term, a set
of'leaf computing devices to which documents in the posting
list for the second term appear, sending a request to the set
of leaf computing devices to determine documents respon-
sive to the query, and generating a search result from
responses received from responses to the request.

As other examples, terms in the term-sharded posting list
can be stored in the fast-access memory when the terms meet
a term-popularity threshold, a particular term can have at
least one document-sharded posting list and one term
sharded posting list, terms failing to meet a minimum
posting list length may be included in term-sharded posting
lists rather than document-sharded posting lists, and/or

15

20

25

40

45

60

4

terms that meet a term popularity threshold that appear in the
remaining documents may be stored in the fast-access
memory.

Another aspect of the disclosure can be embodied in a
computer-implemented method that includes receiving,
using at least one processor of a root node in a distributed
environment, a query having a first term and a second term,
determining, using the at least one processor of the root
node, that the first term is term-sharded, and retrieving a
term-sharded posting list for the first term from a first leaf
node that stores the term-sharded posting list, the first leaf
node being one of a plurality of leaf nodes in the distributed
environment. The method may also include determining,
using the at least one processor of the root node, a second
leaf node from the plurality of leaf nodes that stores a
document-sharded posting list for the second term; sending
the second term and a sub-set of documents from the
term-sharded posting list (e.g., document identifiers in the
term-sharded posting list) to the second leaf node, the
sub-set being documents assigned to the second leaf node;
and generating a search result using a response received
from the second leaf node.

The method can include one or more of the following
features. For example, the method may also include deter-
mining a third leaf node from the plurality of leaf nodes that
stores a document-sharded posting list for the second term,
sending the second term and a second sub-set of documents
from the term-sharded posting list (e.g., documents identi-
fiers in the term-sharded posting list) to the third leaf node,
the sub-set being documents assigned to the third leaf node,
aggregating, using the at least one processor of the root
node, results from the second leaf node and the third leaf
node, and generating the search result using the aggregated
results. As another example, the term-sharded posting list
may include, for a document identified in the term-sharded
posting list, an indication of a leaf node from the plurality of
leaf nodes that the document is associated with. As another
example, determining that the first term is term-sharded may
include determining that the first term appears in fewer
documents than the second term. In some implementations,
the second leaf node may score documents included in the
response prior to sending the response to the root node.

In some implementations, the term-sharded posting list is
a first term-sharded posting list and the query has a third
term and the method may further include determining, using
the at least one processor of the root node, that the third term
is term-sharded, retrieving a second term-sharded posting
list for the third term from a third leaf node that stores the
second term-sharded posting list, the third leaf node being a
different one of the plurality of leaf nodes in the distributed
environment than the first leaf node, and aggregating, using
the at least one processor of the root node, the first term-
sharded posting list and the second term-sharded posting list
to generate the sub-set of documents (e.g., document iden-
tifiers), so that the sub-set of documents includes documents
from the first term-sharded posting list and the second-term-
sharded posting list. In some such implementations the
method may also include performing lightweight scoring on
documents identified in the first term-sharded posting list
and the second term-sharded posting list prior to sending the
sub-set of documents to the second leaf node.

Another aspect of the disclosure can be embodied in a
method that includes receiving, using at least one processor
of a first leaf node in a distributed environment, updates to
a hybrid-sharded index, the hybrid-sharded index including
document-sharded posting lists and term-sharded posting
lists and generating, using the at least one processor of the

US 9,483,568 Bl

5

first leaf node that received an update, replacement posting
lists, and change information for a respective second leaf
node. The method may also include dividing the replace-
ment posting lists into portions, a portion having associated
change information and being associated with a respective
one of the second leaf nodes and sending the portions to
respective second leaf nodes. At a particular leaf node of the
second leaf nodes, the method may include merging, using
at least one processor of the particular leaf node, a received
portion into an updated posting list portion, swapping the
updated posting list portion into memory, and, during the
swap, using the change information and the updated posting
list portion to respond to a query with an older version of the
hybrid-sharded index.

The method may include one or more of the following
features. For example, the change information can include
an inverse translation table and the inverse translation table
may translate new document identifiers to old document
identifiers. As another example, the updated posting list
portion can include the change information and the change
information can include a delete list and an insert list. In
some implementations, the method may include ceasing to
use the change information when the swap is complete. In
some implementations, the dividing can include determining
whether a document in the update is in a first set of
documents or in a second set of documents, and when the
document is in the first set, generating the replacement
posting list as a document-sharded posting list, wherein the
replacement posting list is an updated posting list, and when
the document is in the second set, generating the replace-
ment posting list as a term-sharded posting list and perform-
ing the dividing, sending, and merging.

Some implementations of the method may include storing
the change information in persistent memory, so that a
version of the change information is stored for a period for
a batch update and recovering a prior version of the hybrid-
sharded index using the stored change information. In some
implementations, using the change information includes
translating local document identifiers in the updated posting
list portion to local identifiers for the prior version.

Another aspect of the disclosure can be embodied in a
system that includes distributed computing devices repre-
sented as leaf nodes and a root node and an index of
documents, the index being distributed across the leaf nodes,
the documents being assigned to respective leaf nodes. A
first leaf node of the leaf nodes can include memory storing
document-sharded posting lists for some or all terms asso-
ciated with documents in a first set of documents that are
assigned to the first leaf node, and memory storing term-
sharded posting lists for terms assigned to the first leaf node
without regard to leaf node assignments for documents
identified in the term-sharded posting lists. The first leaf
node also includes at least one processor and memory
storing instructions that, when executed by the at least one
processor, cause the first leaf node to perform operations
including receiving an update for documents assigned to the
first leaf node, determining that the update affects the at least
one document-sharded posting list and, responsive to the
determining, generating an updated document-sharded post-
ing list for the at least one document-sharded posting list.
The operations may also include determining that the update
affects at posting list for a term assigned to a second leaf
node, the term being associated with documents in a second
set of documents that are assigned to the first leaf and not in
the first set of documents. Responsive to the determining,
the operations may include generating change information
for the documents associated with the term, generating an

10

15

20

25

30

35

40

45

50

55

60

65

6

updated term-sharded posting list for the term, and provid-
ing the change information and the updated term-sharded
posting list to the second leaf node.

The system may include one or more of the following
features. For example, the term assigned to the second leaf
node is a first term and the instructions further include
instructions that, when executed, cause the first leaf node to
receive an updated term-sharded posting list portion for a
second term from a third leaf node, the second term being
assigned to the first leaf node and receive an updated
term-sharded posting list portion for the second term from a
fourth leaf node. The instructions may further include
instructions that cause the first leaf node to merge the
updated term-sharded posting list portion from the third leaf
node with the updated term-sharded posting list portion from
the fourth leaf node to generate a new term-sharded posting
list for the second term and use the new term-sharded
posting list for the second term in responding to queries. In
some such implementations, as part of using the new term-
sharded posting list for the second term, the instructions
further include instructions that, when executed, cause the
first leaf node to apply change information for the portion
from the fourth node and the portion from the third leaf node
to the new term-sharded posting list so that the first leaf node
responds to at least some queries with a current version of
the term-sharded posting list. The change information may
include an inverse translation table and the inverse transla-
tion table translates new document identifiers to old docu-
ment identifiers.

As another example, as part of using the new term-
sharded posting list for the second term, the instructions may
further include instructions that, when executed, cause the
first leat node to swap the new term-sharded posting list into
memory in portions and, during the swap, apply change
information for the portion from the fourth leaf node and
change information for the portion from the third leaf node
to the new term-sharded posting list so that the first leaf node
responds to a query with a prior version of the term-sharded
posting list. In some such implementations, applying the
change information occurs for a majority of queries until the
first leatf node notifies the root node that the swap is
complete and after swapping the new term-sharded posting
list into memory and prior to notifying the root node, the first
leaf node responds to a plurality of queries using the new
term-sharded posting list without applying the change infor-
mation. As another example, the instructions further include
instructions that, when executed, cause the first leaf node to
perform the merging when it is determined that a current
version of the term-sharded posting list for the second term
is stored in slower access memory.

In some implementations, determining that the update
affects the posting list for the term assigned to the second
leaf node includes determining that the update affects a
document that is not in the first set of documents, determin-
ing that the term is associated with the document, and
determining that the term fails to meet a popularity thresh-
old. In some such implementations, determining that the
update affects the posting list for the term assigned to the
second leaf node further includes determining that the term
is assigned to the second leaf node by applying a function to
an identifier for the term. In some implementations, the
updated term-sharded posting list may include an identifier
for the first leaf node.

Another aspect of the disclosure may be embodied in a
system that includes distributed computing devices repre-
sented as leaf nodes and a root node and an index of
documents, the index being distributed across the leaf nodes,

US 9,483,568 Bl

7

the documents being assigned to respective leaf nodes. A
first leaf node of the leaf nodes can include memory storing
document-sharded posting lists for some or all terms asso-
ciated with documents in a first set of documents that are
assigned to the first leaf node and memory storing term-
sharded posting lists for terms assigned to the first leaf node
without regard to leaf node assignments for documents
identified in the term-sharded posting lists. The first leaf
node may also include at least one processor and memory
storing instructions that, when executed by the at least one
processor, cause the first leaf node to receive an update for
documents in the first set of documents and, responsive to
the receiving, update at least some of the document-sharded
posting lists, receive an updated term-sharded posting list
portion for a first term from a second leaf node, the first term
being assigned to the first leaf node, receive an updated
term-sharded posting list portion for the first term from a
third leaf node, and generate a new term-sharded posting list
for the first term using the portion from the third leaf node
and the portion from the second leaf node.

The system may include one or more of the following
features. For example, generating the new term-sharded
posting list can include concatenating the portion from the
second leaf node and the portion from the third leaf node
with a portion generated by the first leaf node. As another
example, generating the new term-sharded posting list may
further include receiving change information from the sec-
ond leaf node for the portion from the second leaf node and
concatenating the change information to the end of the
portion from the second leaf node, so that the portion from
the second leaf node includes the change information. In
some implementations, the portion from the second leaf
node includes an identification of the second leaf node that
is retained in the new term-sharded posting list.

Another aspect of the disclosure can be embodied on a
computer-readable medium having recorded and embodied
thereon instructions that, when executed by a processor of a
computer system, cause the computer system to perform any
of the methods disclosed herein.

One or more of the implementations of the subject matter
described herein can be implemented so as to realize one or
more of the following advantages. As one example, the
hybrid system obtains the right tradeoff between 1/O opera-
tions, network traffic, and computation by overlaying term-
sharded posting lists over the same leaves as the doc-sharded
posting lists. Some implementations may also use the infor-
mation generated during an update to recover from failures,
enhancing the system reliability and the system availability.
For example, each leaf in the distributed index may be able
to apply updates to its posting lists independently of other
leaves and verify the updated index before putting the
updated index into use.

The details of one or more implementations are set forth
in the accompanying drawings and the description below.
Other features will be apparent from the description and
drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates an example system in accordance with
the disclosed subject matter.

FIG. 2 illustrates an example flow diagram of query
processing in a hybrid-sharded, distributed inverted index.

FIG. 3 illustrates an example of update information that
can be used to update term-sharded posting lists in a
hybrid-sharded, distributed, inverted index.

20

30

35

40

45

55

60

8

FIG. 4 illustrates a flow diagram of an example of a
process for updating a hybrid-sharded, distributed inverted
index.

FIG. 5 illustrates an example shuffle of updated term-
sharded posting lists.

FIG. 6 illustrates an example of a merged term-sharded
posting list.

FIG. 7 illustrates an example process for swapping old
term-sharded posting lists for new term-sharded posting lists
as part of an update of a hybrid-sharded, distributed inverted
index.

FIG. 8 shows an example of a computer device that can
be used to implement the described techniques.

FIG. 9 shows an example of a distributed computer device
that can be used to implement the described techniques.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Indexes for large repositories can be divided or sharded
into smaller portions and distributed amongst many com-
puting devices. Each portion may correspond to a single
computing device or may be a logical view of a computing
device (and, e.g., itself partitioned or co-located with other
portions). The computing device, whether physical or logi-
cal, may be referred to as a leaf node. A document-sharded
index divides the documents of the repository amongst the
leaves, assigning a document to a leaf and storing posting
lists for the terms found in the document on the same leaf as
the document. Thus, because a particular term may have a
posting list on each leaf, at query time the query server, or
root, looks at each leaf to determine which documents
contain a query term. This increases input/output operations,
so such indexes may generally store the posting lists in fast
memory, such as RAM or flash, to improve query response
latency, although some posting lists may be stored in disk.
On the other hand, although term-sharded indexes may still
divide documents amongst leaves, the posting lists for the
terms contained in a document need not be on the same leaf
as the document. Instead, term-sharded indexes generally
assign a term to a leaf, so that the entire posting list for the
term can be accessed at one leaf. At query time, the leaf to
which a particular term is assigned may contact other leaves,
where the documents are stored, to generate search results
for a query that includes the particular term. Thus, term-
sharded indexes increase network traffic. Some term-
sharded indexes store the posting lists in a tiered structure so
that some posting lists are stored in disk, some in flash, and
some in RAM, etc. For example, rare terms with small
posting lists (e.g., a small number of documents that include
the term) may be stored on disk. Terms appearing in a
moderate amount of documents may be kept in flash, and the
terms appearing in many documents may be kept in RAM.
At query time, for small posting lists, the query server can
generally access one leaf per query term and get the entire
posting list for that term. However, as the documents iden-
tified in the posting list are not necessarily stored on the
same leaf, the posting lists and/or document information is
communicated between the leaves to obtain search results.
Furthermore, index updates can be complex because one
updated document may result in posting list updates at
multiple leaves.

Disclosed implementations may combine a document-
sharded index with a term-sharded index, balancing 1/O
operations with network traffic. Such a hybrid-sharded index
may divide documents into base documents and extended

US 9,483,568 Bl

9

documents. Base documents may be optimized for network
traffic, and the remaining documents may be extended
documents. At indexing time the system may split the
posting list assignments based on the document in which
they appear. In general, terms appearing in base documents
may be document-sharded and stored on the same machine
that the document is assigned to while posting lists for
extended documents may be stored on a machine that differs
from the machine to which the document is assigned. A
system using such a hybrid-sharded index may coordinate
the update of document-sharded portions of the index with
term-sharded portions. Some implementations may also
include an update process that allows the system to continue
serving queries during index updates by allowing a leaf to
choose the version of the document to serve at query time.
FIG. 1 is ablock diagram of a distributed indexing system
100 in accordance with an example implementation. The
system 100 may be used to implement a distributed index
and search system using the techniques described herein.
The depiction of system 100 in FIG. 1 is described as an
Internet-based search engine with an inverted index having,
by way of example, terms as key-values and lists of docu-
ment identifiers as non-key values. Documents may include
any type of files with content, including web pages, PDF
documents, word-processing documents, images, sound
files, JavaScript files, etc. Other network configurations and
applications of the described technology may be used. For
example, the search engine may be used to search local
documents, content stored on portable devices, or docu-
ments available through other technologies. The search
system 100 may receive queries 182 from a client device 170
and return search results 184 in response to the queries. Each
query 182 is a request for information. Query 182 can be, for
example, text, audio, images, or scroll commands. The
search system 100 may include indexing engine 110, query
engine 120, and index serving cluster 160. Indexing engine
110, query engine 120, and index serving cluster 160 may be
computing devices that take the form of a number of
different devices, for example a standard server, a group of
such servers, or a rack server system. In some implemen-
tations, indexing engine 110 and query engine 120 may be
a single system sharing components such as processors and
memories. In addition, indexing engine 110 and query
engine 120 may be implemented in a personal computer, for
example a laptop computer. In some implementations, the
indexing engine 110, the query engine 120, and the index
serving cluster 160 may be distributed systems implemented
in a series of computing devices, such as a group of servers.
In some implementations, the servers may be organized into
a tree structure, with at least a root server 120 and leaf
servers 150A to 150z. In some implementations (not
shown), the tree may include intermediate servers, so that
there are one or more layers between the root 120 and the
leaf servers 150A to 1507z. The indexing engine 110, the
query engine 120, and index serving cluster 160, may be
examples of computer device 900, as depicted in FIG. 9.
The search system 100 illustrated in FIG. 1 operates over
a large corpus of documents, such as the Internet, but can
likewise be used in more limited collections, such as a
library of a private enterprise. In either context, documents
are typically distributed across many different computer
systems and sites, for example websites 190. Regardless of
where each document is located, system 100 may assign
each document an identifier, for example a hash of a URL,
that uniquely identifies the document. The unique identifier
may be known as a global document identifier. Indexing
engine 110 can crawl the contents, for example documents,

20

25

40

45

10

of the web servers to locate newly added content, deleted
content, and modified content. When indexing system 110
identifies content, it may use this information to update the
search index by creating an index update file 130. Indexing
engine 110 may transmit the index update file 130 to the
indexing serving cluster 160 so that the system 100 can
update the index, as will be explained in more detail below
with regard to FIGS. 4-7.

Indexing engine 110 can include one or more processors
configured to execute one or more machine executable
instructions or pieces of software, firmware, or a combina-
tion thereof to create index update files 130. For example,
the indexing engine 110 may receive information from
websites 190 regarding new, updated, and deleted docu-
ments. The indexing engine 110 may assign documents
obtained from websites 190 to one of leaf 150A to 150z.
Websites 190 may be any type of computing device acces-
sible over the Internet. In some implementations, the assign-
ment may be based on a global document identifier, although
other criteria can be used. The indexing engine 110 may
generate a list of documents deleted and a list of new
documents. An update to a document may be considered a
deletion followed by an insertion. Thus, a document appear-
ing on the document delete list and on the document insert
list may be considered an updated document. In some
implementations the indexing engine 110 may generate one
index update file 130 per leaf, so that each leaf receives an
update file for the documents assigned to it. In some
implementations (not shown) the indexing engine 110 may
generate one index update file 130 and the query server 120
may divide the file into several files, one per leaf. The index
update file 130 for a leaf may include a list of documents to
delete and a list of documents to insert. The documents may
be identified in the lists by their global document identifier.
In some implementations, the index update file 130 may also
include posting lists and scoring information for the docu-
ments on the insert list. The index update file 130 may also
include other information, such as sort keys and attachment
data, etc. In other words, the index update file 130 may
include any data or information needed to update a given
document on a given leaf, whether deleted, inserted, or
updated. Although not shown in FIG. 1 for the sake of
brevity, in some implementations, the indexing engine 110
may be one or more separate computing devices.

Like indexing engine 110, query engine 120 may include
one or more servers that use the index serving cluster 160 to
identify search results for queries 182, for example, using
conventional or other information retrieval techniques.
Query engine 120 may also be referred to as the root and
may include one or more servers that receive queries 182
from a requester, such as client 170. The query engine 120
may also work with index serving cluster 160 to identify
documents responsive to the query, and provide information
from the responsive documents as search results 184 to the
requester. Search results 184 may include information iden-
tified from doc-sharded posting lists and term-sharded post-
ing lists. For example, the query engine 120 may work with
index serving cluster 160 to identify documents responsive
to the query from one or more of leaf 150A, leaf 150B, leaf
150n, etc. The query engine 120 may include a ranking
engine that calculates scores for the documents responsive to
the query, for example, using one or more ranking signals.
The ranking engine may rank the documents found respon-
sive to the query using the scores.

System 100 may also include an index serving cluster
160. Index serving cluster 160 may be a collection of
distributed computing devices each with its own processor

US 9,483,568 Bl

11

and memory. The number of computing devices that com-
prise index serving cluster 160 can vary. The index serving
cluster 160 may be divided into one or more leaf nodes, such
as leaf 150A, leaf 150B, leaf 150%, with n representing any
integer. A leaf node may be a logical division of documents
in the corpus, with each document being assigned to a leaf
node. Thus, a leaf node may correspond to one computing
device, or a leat node may be a logical computing device and
may share a physical computing device with other leaves. In
some implementations, a document’s assigned leaf may
change when the document is updated, making leaf assign-
ments flexible. The root 120 or the indexing engine 110 may
determine which documents are assigned to each leaf. The
root 120 may route query requests to the leaf nodes and act
as the primary means of communication between the leaves
at query serving time. In addition to the leaf nodes, the index
serving cluster 160 may include one or more layers of nodes
between the root node 120 and the leaf nodes, but are not
shown in FIG. 1 for the sake of brevity. Thus, for example,
an intermediate node may be associated with, for example,
20 leaf nodes. The intermediate node may be connected
directly to the root, or there may be one or more additional
layers between the intermediate node and the root node.
Thus, although FIG. 1 shows communications directly
between the root and leaf nodes, it is to be understood that
intermediate node(s) may be used to direct communications
and aggregate results using known methods, such as remote
procedure calls. The root, intermediate, and leaf nodes that
make up the tree may, collectively, be referred to as the
index.

Each of the leaf nodes that make up index serving cluster
160 can include document-sharded posting lists 152 and
term-sharded posting lists 154. Because the posting lists on
each leaf 150 are both document-sharded and term-sharded,
the system 100 may be referred to as hybrid-sharded. Each
leaf 150 may also include documents 151. Documents 151
may be documents assigned to the leaf node. In some
implementations document assignment may be a function of
a global document identifier for the document. The system
100 may assign a document to a leaf using any method,
including round-robin assignment, modulation of the global
document identifier, or ranges of the global document iden-
tifier. The documents 151 may be stored in memory con-
figured to store one or more pieces of data, either tempo-
rarily, permanently, semi-permanently, or a combination
thereof. The memory may include any type of storage device
that stores information in a format that can be read and/or
executed by a processor, including volatile memory, non-
volatile memory, or a combination thereof. The documents
151 may be processed, encoded, and scored information for
documents from websites 190, rather than a copy of the
actual documents.

Document-sharded posting lists 152 may generally rep-
resent terms from documents 151 that are considered base
documents. Base documents are documents the system 100
optimizes for network traffic rather than I/O operations. In
some implementations, document-sharded posting lists 152
may be stored in fast-access memory, such as RAM, flash,
cache, etc., to minimize query latency, although not all
posting lists need be stored in fast-access memory. The root
120 may store a list 142 of documents that are base docu-
ments. The root 120 may also keep a list 144 of terms that
are term-sharded, of terms that are document-sharded, or a
list for both terms that are term-sharded and terms that are
document-sharded. Terms may be single words, n-grams,
multiple word phrases, or other word patterns; and likewise
restricts (e.g., “is_English™, can be treated like terms).

10

15

20

25

30

35

40

45

50

55

60

65

12

In some implementations, a subset of terms from
extended documents are term-sharded. For example, the
uncommon terms from extended document are term
sharded. For example posting lists for the uncommon terms
can be stored on a device remote from an extended docu-
ment having the respective term. Such posting lists can be
stored, e.g., on disk. The posting lists for common terms
from extended documents can be stored locally, e.g., on the
same device as the respective document in which it occurs.
Such posting lists can be stored, e.g., in flash memory or
RAM. Accordingly, in some embodiments, the system can
include a single posting list for each of at least some
uncommon terms. The post listing is stored on a single
device based on term-sharding. The system can also include
multiple posting lists for each of at least some common
terms. For example, one such posting list on each device so
that the posting list is co-located on the same device as the
documents that it references.

In some implementations the root 120 may be capable of
determining which leaf a term is assigned to. In implemen-
tations where list 144 is a term-sharded terms list, the list
144 may indicate which leaf a term is assigned to. In other
implementations, the term assighment may be a function of
an identifier for the term, similar to the assignment of
documents to leaves. Thus, each leaf node includes term-
sharded posting lists 154 for terms assigned to the leaf. The
term-sharded posting lists may be stored in a tiered-struc-
ture, such that some of the posting lists may be stored in
RAM, some in flash, and the majority on disk. Each leaf may
determine the tier associated with a term. In some imple-
mentations, terms that appear in over a first predetermined
number of documents are assigned to flash, and terms that
appear in over a second predetermined number of docu-
ments are assigned to RAM, where the second predeter-
mined number is larger than the first predetermined number.
In some implementations, terms that appear in over the
second predetermined number of documents are both docu-
ment-sharded and term sharded. For example, the system
100 may create two posting lists for the term. The first
posting list may include a subset of the documents that the
term appears in, the number of documents in the subset
being less than the first predetermined number of docu-
ments. This first posting list may be stored on disk and may
be term-sharded, or assigned to a particular leaf. The second
posting list for the term may be document sharded, so that
each leaf that includes a document having the term also has
a posting list for that term. Thus, the first posting list may
represent an incomplete portion of the posting list for the
term, and the entirety of the posting list may be represented
by the second posting lists, which are spread across multiple
leaves. In some implementations, the second posting lists
may be stored in RAM or Flash on a particular leaf node.

Term-sharded posting lists may have a format such as the
format shown in FIG. 1. For example, for a term T1, the
posting list may be pre-split by leaf, so that the posting list
includes an indication of which leaf each document identi-
fier belongs to. In the example of FIG. 1, term T1 includes
documents assigned to three leaves—I.1, [.2, and [.3. Docu-
ments d1 and d35 are assigned to L1, documents d53, d67,
and d99 are assigned to 1.2, and document d161 is assigned
to L3. In some implementations, the document identifiers of
posting list 154 may be local document identifiers. For
example, each leaf may assign a local document identifier to
documents stored on the leaf. In some implementations, the
local identifiers may be assigned sequentially, starting with
1. In some implementations, the documents may be sorted,
so that identifiers are assigned sequentially to the sorted

US 9,483,568 Bl

13

documents. The local identifier may be smaller than the
global identifier assigned to a document, thus saving space
in the index.

Leaf nodes 150 may also include translation tables 156
and delta files 158. Translation tables 156 may be generated
during an index update and used at query time to allow the
leaf to determine whether to serve the query a current
version of a document or an updated version of the docu-
ment. For example, at indexing time the indexing engine 110
may update a batch of documents from a portion of the
index. Some of the updated documents may be base docu-
ments whose terms are generally document-sharded while
the other documents may be extended documents whose
terms are generally term-sharded. Thus, the batch of docu-
ments updated affects posting lists on multiple leaves in the
distributed system 100. The updates may be sent to appro-
priate leaves, as part of index update files 130, so that if a
document is inserted, updated, or deleted, the leaf to which
the document is assigned receives an update file 130. To
minimize or even eliminate unavailability time for any
particular portion of the index, the system may allow queries
to execute while the update is taking place. However, a
query should be executed against the entirety of a document
version or not executed against it at all to maintain document
atomicity. Thus the system 100 may coordinate updates
between the doc-sharded posting lists 152 and the term-
sharded posting lists 154 on each leaf, as well as allow a leaf
to decide which version of the document to use.

To accomplish document atomicity, the leaves, at query
time, may use a change information file that enables the leaf
to choose the prior version of the document or the new
version. The change information file, also referred to as a
delta file 158, may be created during the update process and
include a translation table 156. As explained above, each
leaf may assign a local document identifier to documents
stored on the leaf sequentially, starting with 1. Because
documents may be deleted or added to the leaf with each
update, the local identifier of a document may change with
each update. To account for this, each leaf may have a
translation table 156 for an update, which maps old local
document identifiers to new local document identifiers or
vice versa, so that during an update a leaf may choose which
version of the document to use in responding to a query. The
translation table 156 may be either a forward (e.g., old to
new) or inverse (e.g., new to old) translation. FIG. 3
illustrates an example of a forward translation table and an
inverse translation table for an update on a particular leaf
150i. FIG. 1 shows document-sharded posting lists 152,
term-sharded posting lists 154, translation table 156, and
documents 151 for Leaf 1507 only for the sake of brevity,
and it is understood that each leaf 150 can include each of
these components. Furthermore, it is to be understood that
the hybrid-sharded index includes the posting lists associ-
ated with each of leaves 150A to 150x.

Indexing system 110 may be in communication with
websites 190 and query engine 120 may be in communica-
tion with client(s) 170 over network 180. Network 180 may
be for example, the Internet or the network 180 can be a
wired or wireless local area network (LAN), wide area
network (WAN), etc., implemented using, for example,
gateway devices, bridges, switches, and/or so forth. Via the
network 180, the indexing system 110 and the query engine
120 may communicate with and transmit data to/from web-
sites 190 and clients 170.

FIG. 2 illustrates an example flow diagram of query
processing in a hybrid-sharded, distributed inverted index.
The process shown in FIG. 2 may be performed at least in

10

15

20

25

30

35

40

45

50

55

60

65

14

part by a query server, such as query engine 120 shown in
FIG. 1, and one or more serving clusters, such as index
serving cluster 160 shown FIG. 1. In the example of FIG. 2,
the query may include two terms, T1 and T2, where T2 is
found in fewer documents than T1. As shown in the example
of FIG. 2, at query serving time a query server, or root, may
obtain the two query terms (205). The root may be in direct
communication with the leaves, or the root may be in
indirect communication with the leaves through intermedi-
ate servers. For example, in some systems the indexing
serving cluster may be a tree with one or two levels between
the root and the leaf nodes. The intermediate nodes at the
intermediate levels may pass communications from the root
node to the leaves and may aggregate any results from the
leaves before forwarding to the root. For the sake of brevity,
FIG. 2 does not illustrate intermediate nodes, but implemen-
tations are understood to include such nodes.

The root node may obtain any term-sharded posting lists
first, to obtain the list of documents for terms that appear in
fewer documents. The root may include a list of term-
sharded query terms or a list of document-sharded query
terms. In some implementations, documents not included in
the list of document-sharded query terms may be assumed to
be term-sharded, and vice versa. The root node may be
capable of determining an approximate number of docu-
ments that include the term. For example, the list may also
include an indication of the number of documents that
include the term, the indication being an approximation or
an exact number. In some implementations, the tier assign-
ment of a term may be the indication, so that terms assigned
to a disk tier appear in fewer documents than a term assigned
to a flash tier, and terms assigned to a flash tier appear in
fewer documents than terms assigned to a RAM ftier, etc.
Thus, the root may determine term-sharded query terms and,
in some implementations, terms with short posting lists
(210). In the example of FIG. 2, query term T2 is term-
sharded and has a smaller posting list. Thus, the root node
may send a request 270 for the posting list of T2 to the leaf
node to which T2 is assigned (215). In the example of FIG.
2, this is Leaf 2. Leaf 2 may receive the request and obtain
the posting list for T2. (220). As indicated above, the posting
list for T2 may be pre-split by leaf, so that each document
in the posting list is associated with a leaf, with all docu-
ments assigned to the same leaf grouped together. Leaf 2
may send a response 275 that includes the posting list back
to the root (225). In some implementations, the posting list
may include one or more delta files, if an update is in
progress. A delta file includes information that enables the
leaf assigned to a document to determine which version of
the document to serve, as will be discussed in more detail
below. The root may receive the response with the posting
list from L2 (230). If the root requested other term-sharded
posting lists, the root may aggregate the information from
the returned posting lists, do some lightweight scoring,
divide the aggregated information into leaf-specific requests,
and send the requests to appropriate leaves (235). Aggrega-
tion may involve dividing the posting lists into leaf-specific
groups and performing a union or intersection on the docu-
ment identifiers in each group, depending on the query. In
some implementations the posting lists may be pre-split into
leaf-specific groups. For example, the posting list of the
hybrid-sharded index may include a leaf identifier, so that
each document is assigned to a leaf within the posting list.
In the example of FIG. 2, the posting list for T2 includes
documents assigned to leaves L1, L3, and L7. In some

US 9,483,568 Bl

15

implementations, the document identifiers are local docu-
ment identifiers assigned by the leaf, rather than a global
document identifier.

After receiving the response 275, the root knows which
documents are responsive to the more rare term, T2, based
on the returned term-sharded posting list. In the example of
FIG. 2, the query requests that both terms appear in the
document. Thus, the root may use the posting list from Leaf
2 to reduce the number of leaves contacted to obtain the
posting list for the document-sharded term T1. For example,
the root may determine groups of documents from the
term-sharded posting list, determine which leaf is assigned
to the documents in each group, and send a request 280 to
those leaves. The root node may determine that Leaf 3 is a
node that should receive a request and send the request 280
to Leaf 3 (240). Leaf 3 may be chosen because it is assigned
to documents that appear in the posting list for T2 returned
from Leaf 2. Of course other leaves, such as Leaf 1 and Leaf
7 may also receive a request. In addition to the document
identifiers found in the term-sharded posting lists, the
request 280 may also include a request to search for docu-
ments that include query term T1. Leaf 3 may obtain the
document-sharded posting list for T1 (240). The intersection
may generate result documents that are responsive to both
T1 and T2. In some implementations, the leaves may use a
skip table to efficiently identify the documents common to
both posting lists. In some implementations, Leaf 3 may
apply a delta file to determine which documents are result
documents. A delta file is created during an index update and
includes information that allows the leaf to convert the
updated index back to the older version of the index, as will
be explained below in more detail. Using the delta file a leaf
may continue to serve queries during an update. When the
update is complete, the leaf may ignore any delta files and
serve queries without converting the index back to the old
version. If no result documents are found (245, No), Leaf 3
may return an empty list to the root node or to an interme-
diate node, if one exists. If the intersection yields result
documents (245, Yes), the Leaf 3 may score the result
documents based on one or more scoring factors (250). Leaf
3 may perform a full-scoring of the documents because the
leaf has the scoring information stored at the leaf or provided
as part of the request 280. Leaf 3 may send a response back
to the root that includes the document(s) identified as
responsive to the query. The root may aggregate responses
it receives from additional leaves, for example Leaf 1 and
Leaf 7, and/or perform other scoring passes to refine the
search results. The root may then provide the responses to
the query requestor (255).

The query processing demonstrated in FIG. 2 optimizes
both I/O operations and network traffic. A document-sharded
index would ask every leaf to generate a response to the
query, requiring a high level of 1/O operations. A term-
sharded index may involve sending a request to fewer
leaves, but the leaves send numerous requests for informa-
tion to other leaves in order to obtain the information to
generate a search result. The hybrid-sharded index leaf
machine can be used to minimize /O operations and net-
work traffic by limiting the number of leaves that respond to
a query and allowing leaves to perform full scoring for
associated documents responsive to the query.

Updating a Hybrid-Sharded Index

Updates to a purely document-sharded index can be fairly
straightforward because updates for a particular document
affect one leaf, so no coordination between leaves is needed.
Some document-sharded indexes keep a spare leaf for index
updates. At indexing time, the system may use the spare leaf

25

30

40

45

55

16

to construct new posting lists based on terms found in
documents assigned to a leat being updated. The system may
then notity the root node that the formerly spare leaf replaces
the leaf being updated. Thus, leaves in a purely document-
sharded index can easily swap in the new leaf and mark the
old leaf as the spare leaf. But such an update method does
not work for a hybrid-sharded index because updates to one
document affect posting lists on multiple leaves.

In some implementations, the search system 100 coordi-
nates index updates between leaves. At indexing time the
indexing engine may update a batch of documents from a
portion of the index. For example, the index may update the
documents assigned to a particular leaf. Some of the updated
documents may be base documents whose terms are gener-
ally document-sharded while the other documents may be
extended documents whose terms are generally term-
sharded. Thus, the batch of documents updated affects
posting lists on multiple leaves in the distributed system. In
some implementations the indexing engine may send
updates to the root node. The root node may separate the
updates by leaf, so that each leaf receives an update file, such
as update file 130 of FIG. 1. In some implementations the
indexing engine may generate multiple update files 130, one
for each leaf. To minimize or even eliminate unavailability
time for any particular portion of the index, the system may
allow queries to execute while the update is taking place. To
accomplish this and maintain document atomicity, meaning
a query should be executed against the entirety of a docu-
ment version or not executed against it at all, some imple-
mentations may coordinate updates between the doc-
sharded posting lists and the term-sharded posting lists, as
well as allow the leaves to decide which version of the
document to use. Accounting for updates at query time also
enhances recovery capabilities of the system by allowing a
portion of the index to serve queries from the updated index
before rolling in the entire index, as will be explained in
more detail below with regard to FIG. 7. This enables the
system to detect and correct errors that may otherwise crash
one or more leaves.

FIG. 3 illustrates a flow diagram of an example of a
process 300 for updating a hybrid-sharded, distributed
inverted index. Process 300 may be performed at a leaf node
of'an index serving cluster, such as index serving cluster 160
of FIG. 1. Prior to process 300, index updates may have been
divided by leaf, so that each leaf receives a portion of the
current update to the index. In some implementations, the
update may be for a batch of documents that represent some
portion of the total documents in the repository. Thus, the
update need not represent updates to every document of the
indexed corpus. The update file received by a leaf (305) may
be for documents assigned to the leaf. The update file may
include a list of documents to be deleted and a list of
documents to be inserted. The update file may also include
content for the documents to be inserted. The content may
have been processed, encoded, and scored by the indexing
engine. In some implementations the leaf may perform the
processing, encoding, and scoring of the content. The update
file may include the content or a pointer to the content, so
that the leaf node can access the content.

The leaf may assign local document identifiers to the
documents (310). The leaf may assign a local identifier to
documents currently assigned to the leaf that are on the
insert list or are not on the delete list. In other words, the leaf
may assign local identifiers to unchanged documents,
updated documents, and inserted documents. In some imple-
mentations, the local identifiers may be assigned sequen-
tially, starting with zero or 1. In some implementations, the

US 9,483,568 Bl

17

documents may be sorted, so that identifiers are assigned
sequentially to the sorted documents. Because documents
may be deleted or added to the leaf with each update, the
local identifier of a document may change with each update.

FIG. 4 illustrates an example of update information that
can be generated as part of an update and used to update
term-sharded posting lists in a hybrid-sharded, distributed,
inverted index. FIG. 4 illustrates a portion of an update file
410 that includes a delete list and an insert list. The infor-
mation in update file 410 may be representative of informa-
tion found in index update file 130 of FIG. 1, although not
all information from update file 130 is shown in FIG. 4 for
the sake of brevity. The delete list may include documents
that have to be removed from the leaf or updated. The delete
list may include global document identifiers. The insert list
of' update 410 may include a sort field and global document
identifier of documents to be added to the leaf. In the
example of FIG. 4, document g3 is updated, document g4
deleted, and documents g7 and g8 are added. The leaf 150/
may currently have documents with local document identi-
fiers as shown in old index 405. The leaf may apply the
update 410 to the old index 405 to generate the new index
415. As demonstrated by FIG. 4, document g2 had local
document id 2 in the old index 405 but now has local
document id 3 in the new index 415. Document g3 received
a new sort order in the update 410 and now has local
document id 2.

As part of applying the update 410 to the old index 405,
the leaf may generate a translation table. The translation
table may map old local document identifiers to new local
document identifiers. The translation table may account for
changes in a document’s local identifier, so that the leaf may
continue responding to queries during the update. The leaf
may generate a forward translation table or an inverse
translation table or both. A forward translation table may
convert old local document identifiers to new local docu-
ment identifiers. In some implementations the forward trans-
lation table may take the form of table 420 of FIG. 4. The
table 420 of FIG. 4 indicates where in the new index 415 the
document has moved. For example, document g1, which has
local document identifier 1, did not move, so it has no entry
in table 420. Document g2, which had local document
identifier 2, moved up one in the new index, and now has a
local identifier of 3. Thus, the translation for g2 is +1, which
tells the leaf to add one to the old local document identifier
to calculate the new local document identifier. If a local
document identifier is not listed in the translation table it
may be assumed to have the translation factor of the next
lowest local document identifier. Thus, in table 420 local
document identifier 7 may be assumed to be local document
identifier 8 in the new index. Such a format enables the leaf
to keep the memory footprint of translation table small. The
leaf may also or alternatively generate an inverse translation
table 425. The inverse translation table 425 may convert new
local document identifiers to an old local document identi-
fier. In some implementations, the inverse translation table
may take the form of table 425 of FIG. 4. Like table 420,
table 425 may find the highest entry less than or equal to the
new document identifier and apply the translation. For
example, new local document identifier 8 may be mapped to
old document identifier 7 by applying the transformation of
-1, associated with new local document identifier 7 in
translation table 425.

Returning to FIG. 3, the leaf may generate a replacement
index and a delta file (315). The leaf may generate the
replacement index by merging the received update with the
current index information, using the new local document

10

15

20

25

30

35

40

45

50

55

60

65

18

identifiers. The merge of updates may happen completely in
the document major space. A document major space is the
local document id space that would be created considering
all documents (base and extended) are fully document-
sharded. For example, given an existing index on Leaf i of
F0 and an update file U0, the replacement index will produce
F0' where F0' contains all terms and postings from F0 that
were not deleted and from U0, using the new local ids for the
documents in a given range of the global document identifier
space. The advantages of such a merge include enabling
creation of the replacement index by reading the existing
index and the delta file for Leaf i. Another advantage is that
the range of identifiers considered when inserting new
postings into existing posting lists is bounded by the number
of documents assigned to the leaf. Furthermore, because the
replacement index is complete, terms can easily be shifted
between tiers and data for any given term can be distributed
to term-sharded posting lists without concern for local id
because, for a given version of a given leaf, the local
identifiers are guaranteed to be correct.

As part of generating the replacement index, the leaf may
also generate a delta file. The delta file is change information
for the index and may include the translation table, a delete
list, and new posting lists. In general, change information
includes any information useful in converting an old version
of a posting list into a new version of the posting list or vice
versa.

With a replacement index generated, the leaf, for example
Leaf i may divide the replacement index into leaf portions,
including at least one document-sharded portion (320). For
example, terms appearing in documents that are base docu-
ments may generally be in posting lists stored on Leaf i.
These document-sharded posting lists do not need to be sent
to another leaf, regardless of whether the term is assigned to
another leaf. Terms that appear in all other documents may
be term sharded, and the posting lists may be stored on a leaf
other than Leaf i. Thus Leaf i may divide the term-sharded
posting lists according to the leaf a term is assigned to. For
example, if term T1 is assigned to Leaf A, and term T25 is
assigned to Leaf n, Leaf i may divide the replacement index
into a portion for Leaf A that includes the posting list of T1
and a portion for Leaf n that includes the posting list of term
T25. Of course, Leaf'i does not have the full posting list for
terms T1 or T25, but only the document identifiers of the
documents that include those terms and are assigned to Leaf
i

To generate the full term-sharded posting lists and achieve
the hybrid-sharded index structure, the leaf may send the
leaf portions to respective leaves and may receive portions
from other leaves. As indicated above, any document-
sharded posting lists may stay at the leaf while term-sharded
posting lists may be divided into portions, each portion
corresponding to a leaf. The leaf may append change infor-
mation associated with the documents in a portion to the end
of'the portion prior to sending the portion to its intended leaf.
The exchange of posting list portions between leaves in the
indexing cluster may be referred to as a shuffle. In some
implementations, the exchange may be accomplished by
writing the posting list portions to a memory location that
each leaf can access, with each leaf retrieving its assigned
portions from the memory location. In some implementa-
tions the leaves may send portions directly to other leaves.

FIG. 5 illustrates an example shuffle of updated term-
sharded posting lists. In the example of FIG. 5, Leaf 150A
has divided the term-sharded posting lists into three shown
portions, one that stays at Leaf 150A, one intended for Leaf
150B, and one intended for Leaf 150%. Likewise, Leaf 150;

US 9,483,568 Bl

19

has posting lists destined for Leaf 150A, Leaf 150B, and
Leaf 1507. As shown, Term T1 is assigned to Leaf 150A, so
the documents that are assigned to Leaf 150i are in the
posting list for term T1 on Leaf 150i. Leaf 150 sends this
portion of the posting list to Leaf 150A. Although not
shown, Leaves 150B to 150» will also send any term-
sharded posting lists for term T1 to Leaf 150A. Similarly,
Leaf 150A and Leaf 150i both include posting lists for terms
T25 and T286, which are assigned to Leaf 150%. Thus, Leaf
150A and Leaf 150; will send respective portions to Leaf
150%. In addition to the posting list, each portion may also
include delta information, as shown in FIG. 5. The delta
information may enable the leaf sending the portion, at
query time, to choose which version of a document to use in
responding to a query. Although only four leaves are illus-
trated in FIG. 5, it is understood that the swap may involve
hundreds or even thousands of leaves.

Returning to FIG. 3, when a leaf has finished sending its
portions of the term-sharded posting lists, the leaf may begin
updating its index. For document-sharded posting lists (330,
Yes), the leaf may store the replacement portion in a spare
leaf in memory (335). The replacement portion represents a
full replacement of the current document-sharded posting
lists for the leaf. When the leaf is ready to start serving the
update, the leaf may tell the root to make the spare leaf the
active leaf. The leaf may time this notification with updates
for its term-sharded posting lists. For example, when the leaf
has received or obtained its associated term-sharded portions
from the other leaves, the leaf may begin swapping in the
next version of the term-sharded portion of the index.

For term-sharded posting lists (330, No), the leaf may
merge the posting lists received from the other leaves,
forming a complete posting list for a particular term (340).
FIG. 6 illustrates an example of a merged term-sharded
posting list. In the example of FIG. 6 Leaf 150A has received
or retrieved the portion of the posting list sent by Leaf 1507,
as shown in FIG. 5. Leaf 150A may merge its portion the
posting list for term T1 with the portion sent from Leaf 150i
and merge its portion of the posting list for term T34 with
the portion sent from Leaf 150i, etc. In some implementa-
tions the merge may simply be a concatenation of the
posting lists by term. Such a concatenated posting list
pre-groups the document identifiers by leaf, so that the
posting list itself indicates where the document is stored.
Furthermore, the posting list may contain the local docu-
ment identifiers, which have a smaller memory footprint
than global document identifiers.

In some implementations, the leaf may also append the
change information, generated during the creation of the
replacement index prior to the shufile, to the end of the
posting list. For example, the change information may be at
the end of the posting list, as illustrated in FIG. 6, or at the
end of document identifiers within the posting list. Thus,
during an update the posting list for a term may be under-
stood to include the change information. The change infor-
mation may be stored with the posting list and sent between
leaves at query time. The change information may enable a
leaf to serve a query using either the old version or the new
version of a document, as will be explained in more detail
below. After the update is complete the change information
may be ignored. In some implementations the change infor-
mation may only be appended to posting lists stored on
slower-access memory such as disk. This eliminates a sepa-
rate disk seek to obtain the change information. For posting
lists stored in faster-access memory the change information
may just be available for access with the posting list. The
change information may include an inverse translation table,

10

15

20

25

30

35

40

45

50

55

60

65

20

allowing a leaf to translate the new index into a prior
version. Thus, if the change information is ignored the
system will serving the new version of the index, and if the
change information is applied the system can serve the old
version of the index.

After a leaf generates complete posting lists for the terms
associated with the leaf, the system may begin swapping the
new index for the old (345). As mentioned above, for the
document-sharded terms, a leaf may have a copy of the
index in a spare leaf, ready for use. When the swap of
term-sharded posting lists is complete the leaf may provide
an indication that queries are to be served using the new
index. The indication may cause the leaf to stop applying the
change information to term-sharded posting lists and may
cause the root to use the replacement index in the spare leaf
and mark the old version of the document-sharded posting
lists as the spare leaf. Thus, the indication causes each leaf
to coordinate the updating of the document-sharded portions
of the index with the term-sharded portions. Because at
query serving time a particular leaf may receive the change
information with the term-sharded posting lists stored on
other leaves at query time, the particular leaf has the ability
to determine whether to apply the delta or not for the
documents assigned to the particular leaf. Thus, the leaves
can serve different versions of the repository with document
atomicity.

FIG. 7 illustrates an example process 700 for swapping
term-sharded posting lists as part of an update of a hybrid-
sharded, distributed inverted index. Process 700 may take
place at a leaf node as part of step 345 of FIG. 3. The leaf
node may employ two update paths, one for term-sharded
posting lists stored on disk or other forms of slower-access
memory, and one for term-sharded posting lists stored in
faster access memory, such as RAM, flash, cache, etc. In the
slower-access memory path (705, Yes), the leaf may select
one of the posting lists (710) and append the change infor-
mation file with an inverse translation table to the end of the
full posting list (715) that was concatenated from portions of
the posting list from other leaves. Adding the change infor-
mation allows the leaf to avoid an extra disk seek to fetch
this information when serving queries during the update.
The posting list, with the appended change information, may
then be loaded into memory and verified (720). For example,
the leaf may begin sending some of the query requests to the
updated posting list. This may enable the leaf to detect
problems with the update early on, before a failure that could
cause the leaf to crash. The leaf may then unload the old
posting list (725). The leaf may repeat this process for any
other posting lists stored in the slower-access memory (730,
Yes).

If the posting list is stored in faster-access memory (705,
No), the leaf node may divide the posting lists and their
corresponding change information into slices. In some
implementations, the leaf may divide the posting lists into
roughly 8 to 16 slices, each of which can be loaded inde-
pendently into memory. The leaf may determine the slices so
that the leaf knows which slice a particular term and
document identifier are assigned to. In some implementa-
tions, the leaf may load one slice and its corresponding
change information, or delta file, into memory. The slices
currently being served may remain in place, but the leaf may
begin sending query traffic to the new slice and its change
information because the change information allows the leaf
to convert the information in the new slice back to the old
information. In some implementations the system may begin
sending query traffic over slowly, monitoring for problems
or performing other verification processes. In this manner,

US 9,483,568 Bl

21

the leaf may proceed as cautiously as needed to avoid
failures caused by the update. When the leaf is satisfied that
the loaded slice is working, the leaf may unload the old slice
(740). Although the old slice is unloaded, the leaf is still
converting the updated slice back to the old slice by applying
the delta file. The leaf may then repeat steps 735 to 745 with
a next slice (750, Yes) until all slices have been loaded (750,
No). In some implementations a leaf may perform the
slower-access memory process, steps 710 to 730, and the
faster-access memory process, steps 735 to 755 concur-
rently.

When all swapping is complete, for posting lists stored in
the slower and the faster access memory (760, Yes), the leaf
may perform additional verification (765). For example, the
leaf may allow some queries to use the updated repository,
i.e., by not applying the change information, to verify that
the leaf can retrieve certain documents. When verification is
complete, the leaf may notify the root that the swap is
complete begin using the updated posting lists by ignoring
the delta information for term-sharded posting lists and
using the spare leaf with the updated document-sharded
posting lists. In some implementations, the root may store a
flag or bit or some other indication of whether a leaf is
serving the old or updated version of the index. Thus, in
some implementations when a leaf has finished the swap, the
root may set or update the indicator for the leaf. After all
leaves have finished the swap, the update is complete.

If for some reason a leaf fails during an update, the change
information may be used to speed recovery of the index. For
example, in an implementation where the change informa-
tion files are sent to a shared memory location, the system
may write these files to persistent storage. In other imple-
mentations the leaf that produced the delta file or the leaf
that receives the delta file may store the file to persistent
storage. In other words, the system may keep the delta files
even if the system is no longer using the delta files. If a leaf
fails to produce its delta during an update, the remaining
leaves can proceed to process the rest of the updates and the
failed leaf can revert back to using the old version of the
index until the problem is resolved. If a leaf fails after the
shuflle, the leaf can re-request the delta files from persistent
storage. When the failed leaf knows the version it is cur-
rently serving, the failed leaf can apply one or more of the
stored delta files to recover the index to a point that will not
fail. In this manner, some implementations may use the
information generated during an update to recover from
failures, enhancing the system reliability and availability.

FIG. 8 shows an example of a generic computer device
800, which may be system 100, client 170, and/or a host of
websites 190 of FIG. 1, which may be used with the
techniques described here. Computing device 800 is
intended to represent various example forms of computing
devices, such as laptops, desktops, workstations, personal
digital assistants, cellular telephones, smart phones, tablets,
servers, and other computing devices, including wearable
devices The components shown here, their connections and
relationships, and their functions, are meant to be exemplary
only, and are not meant to limit implementations of the
inventions described and/or claimed in this document.

Computing device 800 includes a processor 802, memory
804, a storage device 806, and expansion ports 810 con-
nected via an interface 808. In some implementations,
computing device 800 may include transceiver 846, com-
munication interface 844, and a GPS (Global Positioning
System) receiver module 848, among other components,
connected via interface 808. Device 800 may communicate
wirelessly through communication interface 844, which may

30

35

40

45

22

include digital signal processing circuitry where necessary.
Each of the components 802, 804, 806, 808, 810, 840, 844,
846, and 848 may be mounted on a common motherboard or
in other manners as appropriate.

The processor 802 can process instructions for execution
within the computing device 800, including instructions
stored in the memory 804 or on the storage device 806 to
display graphical information for a GUI on an external
input/output device, such as display 816. Display 816 may
be a monitor or a flat touchscreen display. In some imple-
mentations, multiple processors and/or multiple buses may
be used, as appropriate, along with multiple memories and
types of memory. Also, multiple computing devices 800 may
be connected, with each device providing portions of the
necessary operations (e.g., as a server bank, a group of blade
servers, or a multi-processor system).

The memory 804 stores information within the computing
device 800. In one implementation, the memory 804 is a
volatile memory unit or units. In another implementation,
the memory 804 is a non-volatile memory unit or units. The
memory 804 may also be another form of computer-readable
medium, such as a magnetic or optical disk. In some
implementations, the memory 804 may include expansion
memory provided through an expansion interface.

The storage device 806 is capable of providing mass
storage for the computing device 800. In one implementa-
tion, the storage device 806 may be or contain a computer-
readable medium, such as a floppy disk device, a hard disk
device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an
array of devices, including devices in a storage area network
or other configurations. A computer program product can be
tangibly embodied in such a computer-readable medium.
The computer program product may also contain instruc-
tions that, when executed, perform one or more methods,
such as those described above. The computer- or machine-
readable medium is a storage device such as the memory
804, the storage device 806, or memory on processor 802.

The interface 808 may be a high speed controller that
manages bandwidth-intensive operations for the computing
device 800 or a low speed controller that manages lower
bandwidth-intensive operations, or a combination of such
controllers. An external interface 840 may be provided so as
to enable near area communication of device 800 with other
devices. In some implementations, controller 808 may be
coupled to storage device 806 and expansion port 814. The
expansion port, which may include various communication
ports (e.g., USB, Bluetooth, Ethernet, wireless Ethernet)
may be coupled to one or more input/output devices, such as
a keyboard, a pointing device, a scanner, or a networking
device such as a switch or router, e.g., through a network
adapter.

The computing device 800 may be implemented in a
number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 830, or
multiple times in a group of such servers. It may also be
implemented as part of a rack server system. In addition, it
may be implemented in a personal computer such as a laptop
computer 822, or smart phone 836. An entire system may be
made up of multiple computing devices 800 communicating
with each other. Other configurations are possible.

FIG. 9 shows an example of a generic computer device
900, which may be system 100 of FIG. 1, which may be used
with the techniques described here. Computing device 900
is intended to represent various example forms of large-scale
data processing devices, such as servers, blade servers,
datacenters, mainframes, and other large-scale computing

US 9,483,568 Bl

23

devices. Computing device 900 may be a distributed system
having multiple processors, possibly including network
attached storage nodes, that are interconnected by one or
more communication networks. The components shown
here, their connections and relationships, and their func-
tions, are meant to be exemplary only, and are not meant to
limit implementations of the inventions described and/or
claimed in this document.

Distributed computing system 900 may include any num-
ber of computing devices 980. Computing devices 980 may
include a server or rack servers, mainframes, etc. commu-
nicating over a local or wide-area network, dedicated optical
links, modems, bridges, routers, switches, wired or wireless
networks, etc.

In some implementations, each computing device may
include multiple racks. For example, computing device 980a
includes multiple racks 9584-958#n. Each rack may include
one or more processors, such as processors 952a-952x and
962a-962n. The processors may include data processors,
network attached storage devices, and other computer con-
trolled devices. In some implementations, one processor
may operate as a master processor and control the schedul-
ing and data distribution tasks. Processors may be intercon-
nected through one or more rack switches 958, and one or
more racks may be connected through switch 978. Switch
978 may handle communications between multiple con-
nected computing devices 900.

Each rack may include memory, such as memory 954 and
memory 964, and storage, such as 956 and 966. Storage 956
and 966 may provide mass storage and may include volatile
or non-volatile storage, such as network-attached disks,
floppy disks, hard disks, optical disks, tapes, flash memory
or other similar solid state memory devices, or an array of
devices, including devices in a storage area network or other
configurations. Storage 956 or 966 may be shared between
multiple processors, multiple racks, or multiple computing
devices and may include a computer-readable medium stor-
ing instructions executable by one or more of the processors.
Memory 954 and 964 may include, e.g., volatile memory
unit or units, a non-volatile memory unit or units, and/or
other forms of computer-readable media, such as a magnetic
or optical disks, flash memory, cache, Random Access
Memory (RAM), Read Only Memory (ROM), and combi-
nations thereof. Memory, such as memory 954 may also be
shared between processors 952a-952x. Data structures, such
as an index, may be stored, for example, across storage 956
and memory 954. Computing device 900 may include other
components not shown, such as controllers, buses, input/
output devices, communications modules, etc.

An entire system, such as system 100, may be made up of
multiple computing devices 900 communicating with each
other. For example, device 980a may communicate with
devices 9805, 980¢, and 9804, and these may collectively be
known as system 100. As another example, system 100 of
FIG. 1 may include one or more computing devices 900 as
indexing system 110, a separate computing device 900 as
query server 120, and one or more computing devices 900
as index serving cluster 160. Furthermore, some of the
computing devices may be located geographically close to
each other, and others may be located geographically distant.
The layout of system 900 is an example only and the system
may take on other layouts or configurations.

Various implementations can include implementation in
one or more computer programs that are executable and/or
interpretable on a programmable system including at least
one programmable processor, which may be special or
general purpose, coupled to receive data and instructions

10

15

20

25

30

35

40

45

50

55

60

65

24

from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device.

These computer programs (also known as programs,
software, software applications or code) include machine
instructions for a programmable processor, and can be
implemented in a high-level procedural and/or object-ori-
ented programming language, and/or in assembly/machine
language. As used herein, the terms “machine-readable
medium” “computer-readable medium” refers to any non-
transitory computer program product, apparatus and/or
device (e.g., magnetic discs, optical disks, memory (includ-
ing Read Access Memory), Programmable Logic Devices
(PLDs)) used to provide machine instructions and/or data to
a programmable processor but not to transitory signals.

The systems and techniques described here can be imple-
mented in a computing system that includes a back end
component (e.g., as a data server), or that includes a middle-
ware component (e.g., an application server), or that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of'such back end, middleware, or front end components. The
components of the system can be interconnected by any
form or medium of digital data communication (e.g., a
communication network). Examples of communication net-
works include a local area network (“LLAN”), a wide area
network (“WAN”), and the Internet.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

A number of implementations have been described. Nev-
ertheless, various modifications may be made without
departing from the spirit and scope of the invention. In
addition, the logic flows depicted in the figures do not
require the particular order shown, or sequential order, to
achieve desirable results. In addition, other steps may be
provided, or steps may be eliminated, from the described
flows, and other components may be added to, or removed
from, the described systems. Accordingly, other implemen-
tations are within the scope of the following claims.

What is claimed is:

1. A system comprising:

distributed computing devices represented by leaf nodes;

memory storing an index of documents, the index being

distributed across multiple computing devices, the

documents being assigned to respective computing

devices, and wherein a first document is in a first set of

documents assigned to a first leaf node and a second

document is in a second set of documents assigned to

the first leaf node, the first document being a base

document, wherein:

terms in the first document are identified as document
sharded and posting lists for the terms in the first
document are stored in fast memory at the first leaf
node, and

posting lists for at least some terms in the second
document that are term sharded and stored at com-
puting devices other than the first leaf node; and

at least one root computing device that includes:

at least one processor,
memory storing instructions that, when executed by the
at least one processor, cause the root computing

US 9,483,568 Bl

25

device to map documents to computing devices and
map term-sharded terms to computing devices, and
memory storing instructions that, when executed by the
at least one processor cause the system to access
posting lists from the index in response to queries.

2. The system of claim 1 wherein the posting lists for at
least some terms in the second document are document-
sharded rather than term-sharded, and are stored on the
computing device that stores the second document.

3. The system of claim 2 wherein the posting lists for
document-sharded term are stored in fast access storage.

4. The system of claim 1 wherein the terms that are
document-sharded from the second document are common
terms.

5. The system of claim 1 wherein accessing posting lists
comprises, in response to a query having at least a first query
term and a second query term, the second query term
corresponding to one of the term-sharded terms:

retrieving a posting list for the second query term from

one of the computing devices, wherein the retrieved
posting list indexes occurrences of the second query
term in documents stored on multiple different com-
puting devices of the distributed computing devices;
and

retrieving posting lists for the first query term from some

of the multiple different computing devices, wherein
the retrieved posting lists index occurrences of the first
query term in documents that are co-located on the
computing device that stores the respective posting list.

6. The system of claim 5, wherein references to docu-
ments in the posting list for the second query term are
organized by computing device to which the documents are
assigned.

7. The system of claim 1, wherein the memory further
stores instructions that, when executed by the at least one
processor, cause the system to generate search results
responsive to accessing the posting lists, wherein generating
search results includes:

receiving a query at the root computing device, the query

having at least a first query term and a second query
term;

determining that the second query term is term sharded;

obtaining a posting list for the second query term from a

computing device to which the second query term is
assigned; and

sending at least a portion of information in the obtained

posting list to at least another computing device for
intersection with a posting list for the first query term.

8. The system of claim 7, wherein generating search
results further comprises:

receiving scores for documents from the another comput-

ing device, the documents being relevant to the first
query term and identified by the obtained posting list.

9. The system of claim 7, wherein, at the another com-
puting device, information about (i) the first query term, (ii)
the second query term, and (iii) a portion of the posting list
for the second query term that was obtained from the
computing device to which the second query term is
assigned, is received and used to identify documents in the
first set relevant to the query and documents in the second
set relevant to the query.

10. The system of claim 1, wherein each of the term-
sharded terms is assigned to a respective leaf node of the leaf
nodes.

11. A data storage system comprising:

a plurality of leaf computing devices in a distributed

system,

25

30

35

40

45

50

55

60

65

26

a root computing device in communication with the

plurality of leaf computing devices,

wherein at least one of the leaf computing devices

includes:
memory, at least some of which is fast-access memory,
and at least some which is disk memory, the memory
being configured in arrays; and
processors for accessing the memory and processing
posting lists stored in the memory, each array being
accessible at least to one or more processors of the at
least one leaf computing device,
and wherein the memory stores:
documents assigned to the at least one leaf comput-
ing device,
document-sharded posting lists for terms appearing
in documents of a first set of the documents, the
document-sharded posting lists being stored in the
fast-access memory, and
term-sharded posting lists for terms appearing in
remaining documents, the terms being assigned to
respective leaf computing devices of the plurality
of leaf computing devices regardless of the leaf
computing device assignment of documents in
which the terms appear, the term-sharded posting
lists being stored primarily in the disk memory,
wherein within each term-sharded posting list,
references to documents are organized by the leaf
computing device to which the documents are
assigned.

12. The system of claim 11, wherein a document portion
of the term-sharded posting lists are pre-split into groups,
each group being associated with a respective leaf comput-
ing device of the plurality of leaf computing devices, and
wherein the root computing device includes:

at least one processor; and

memory storing instructions that, when executed by the at

least one processor, cause the root computing device to

perform operations comprising:

receiving a query, the query including a first term and
a second term, the second term being term-sharded;

retrieving the posting list for the second term from a
second leaf computing device of the plurality of leaf
computing devices, the second leaf computing
device being associated with the second term;

determining, based on the groups appearing in the
posting list for the second term, a set of leaf com-
puting devices to which documents in the posting list
for the second term appear;

sending a request to the set of leaf computing devices
to determine documents responsive to the query; and

generating a search result from responses received from
responses to the request.

13. The system of claim 11, wherein terms in the term-
sharded posting list are stored in the fast-access memory
when the terms meet a term-popularity threshold.

14. The system of claim 11, wherein a particular term has
at least one document-sharded posting list and one term-
sharded posting list.

15. The system of claim 11, wherein terms failing to meet
a minimum posting list length are included in term-sharded
posting lists rather than document-sharded posting lists.

16. The system of claim 11, wherein terms that meet a
term popularity threshold that appear in the remaining
documents are stored in the fast-access memory.

US 9,483,568 Bl

27

17. A method comprising:

receiving, using at least one processor of a root node in a
distributed environment, a query having a first term and
a second term;

determining, using the at least one processor of the root
node, that the first term is term-sharded;

retrieving a term-sharded posting list for the first term
from a first leaf node that stores the term-sharded
posting list, the first leaf node being one of a plurality
of leaf nodes in the distributed environment;

determining, using the at least one processor of the root
node, a second leaf node from the plurality of leaf
nodes that stores a document-sharded posting list for
the second term;

sending the second term and a sub-set of documents from
the term-sharded posting list to the second leaf node,
the sub-set being documents assigned to the second leaf
node; and

generating a search result using a response received from
the second leaf node.

18. The method of claim 17, further comprising:

determining a third leaf node from the plurality of leaf
nodes that stores a document-sharded posting list for
the second term;

sending the second term and a second sub-set of docu-
ments from the term-sharded posting list to the third
leaf node, the sub-set being documents assigned to the
third leaf node;

aggregating, using the at least one processor of the root 3o

node, results from the second leaf node and the third
leaf node; and
generating the search result using the aggregated results.

28

19. The method of claim 17, wherein the term-sharded
posting list includes, for a document identified in the term-
sharded posting list, an indication of a leaf node from the
plurality of leaf nodes that the document is associated with.

5 20. The method of claim 17, wherein determining that the
first term is term-sharded includes determining that the first
term appears in fewer documents than the second term.
21. The method of claim 17, wherein the term-sharded
posting list is a first term-sharded posting list and the query
has a third term and the method further includes:
determining, using the at least one processor of the root
node, that the third term is term-sharded;
retrieving a second term-sharded posting list for the third
term from a third leaf node that stores the second
term-sharded posting list, the third leaf node being a

10

L different one of the plurality of leaf nodes in the
distributed environment than the first leaf node; and

aggregating, using the at least one processor of the root

node, the first term-sharded posting list and the second

20 term-sharded posting list to generate the sub-set of

documents, so that the sub-set of documents includes
documents from the first term-sharded posting list and
the second-term-sharded posting list.
22. The method of claim 21, the method further compris-
ing:
performing lightweight scoring on documents identified
in the first term-sharded posting list and the second
term-sharded posting list prior to sending the sub-set of
documents to the second leaf node.
23. The method of claim 17, wherein the second leaf node
scores documents included in the response prior to sending
the response to the root node.

#* #* #* #* #*

